dolphinium's picture
Upload 2 files
4d74be9 verified
raw
history blame
35.9 kB
import gradio as gr
import json
import re
import datetime
import pandas as pd
import pysolr
import google.generativeai as genai
from sshtunnel import SSHTunnelForwarder
import matplotlib.pyplot as plt
import seaborn as sns
import io
import os
import logging
import concurrent.futures
from IPython.display import display, Markdown
import copy
# --- Suppress Matplotlib Debug Logs ---
logging.getLogger('matplotlib').setLevel(logging.WARNING)
# --- SSH Tunnel Configuration ---
# It's recommended to load secrets securely, e.g., from environment variables
SSH_HOST = os.environ.get('SSH_HOST')
SSH_PORT = 5322
SSH_USER = os.environ.get('SSH_USER')
SSH_PASS = os.environ.get('SSH_PASS')
# --- Solr Configuration ---
REMOTE_SOLR_HOST = '69.167.186.48'
REMOTE_SOLR_PORT = 8983
LOCAL_BIND_PORT = 8983
SOLR_CORE_NAME = 'news'
SOLR_USER = os.environ.get('SOLR_USER')
SOLR_PASS = os.environ.get('SOLR_PASS')
# --- Google Gemini Configuration ---
try:
genai.configure(api_key=os.environ.get('GEMINI_API_KEY'))
except Exception as e:
print(f"❌ Gemini API Key Error: {e}. Please ensure 'GEMINI_API_KEY' is set in your environment.")
# --- Global Variables ---
ssh_tunnel_server = None
solr_client = None
llm_model = None
is_initialized = False
try:
# 1. Start the SSH Tunnel
ssh_tunnel_server = SSHTunnelForwarder(
(SSH_HOST, SSH_PORT),
ssh_username=SSH_USER,
ssh_password=SSH_PASS,
remote_bind_address=(REMOTE_SOLR_HOST, REMOTE_SOLR_PORT),
local_bind_address=('127.0.0.1', LOCAL_BIND_PORT)
)
ssh_tunnel_server.start()
print(f"πŸš€ SSH tunnel established: Local Port {ssh_tunnel_server.local_bind_port} -> Remote Solr.")
# 2. Initialize the pysolr client
solr_url = f'http://127.0.0.1:{ssh_tunnel_server.local_bind_port}/solr/{SOLR_CORE_NAME}'
solr_client = pysolr.Solr(solr_url, auth=(SOLR_USER, SOLR_PASS), always_commit=True)
solr_client.ping()
print(f"βœ… Solr connection successful on core '{SOLR_CORE_NAME}'.")
# 3. Initialize the LLM
llm_model = genai.GenerativeModel('gemini-2.5-flash', generation_config=genai.types.GenerationConfig(temperature=0))
print(f"βœ… LLM Model '{llm_model.model_name}' initialized.")
print("βœ… System Initialized Successfully.")
is_initialized = True
except Exception as e:
print(f"\n❌ An error occurred during setup: {e}")
if ssh_tunnel_server and ssh_tunnel_server.is_active:
ssh_tunnel_server.stop()
field_metadata = [
{
"field_name": "business_model",
"type": "string (categorical)",
"example_values": ["pharma/bio", "drug delivery", "pharma services"],
"definition": "The primary business category of the company involved in the news. Use for filtering by high-level industry segments."
},
{
"field_name": "news_type",
"type": "string (categorical)",
"example_values": ["product news", "financial news", "regulatory news"],
"definition": "The category of the news article itself (e.g., financial, regulatory, acquisition). Use for filtering by the type of event being reported."
},
{
"field_name": "event_type",
"type": "string (categorical)",
"example_values": ["phase 2", "phase 1", "pre clinical", "marketed"],
"definition": "The clinical or developmental stage of a product or event discussed in the article. Essential for queries about clinical trial phases."
},
{
"field_name": "source",
"type": "string (categorical)",
"example_values": ["Press Release", "PR Newswire", "Business Wire"],
"definition": "The original source of the news article, such as a newswire or official report."
},
{
"field_name": "company_name",
"type": "string (exact match, for faceting)",
"example_values": ["pfizer inc.", "astrazeneca plc", "roche"],
"definition": "The canonical, standardized name of a company. **Crucially, you MUST use this field for `terms` faceting** to group results by a unique company. Do NOT use this for searching."
},
{
"field_name": "company_name_s",
"type": "string (multi-valued, for searching)",
"example_values": ["pfizer inc.", "roche", "f. hoffmann-la roche ag", "nih"],
"definition": "A field containing all known names and synonyms for a company. **You MUST use this field for all `query` parameter searches involving a company name** to ensure comprehensive results. Do NOT use for `terms` faceting."
},
{
"field_name": "territory_hq_s",
"type": "string (multi-valued, hierarchical)",
"example_values": ["united states of america", "europe", "europe western"],
"definition": "The geographic location (country and continent) of a company's headquarters. It is hierarchical. Use for filtering by location."
},
{
"field_name": "therapeutic_category",
"type": "string (specific)",
"example_values": ["cancer, other", "cancer, nsclc metastatic", "alzheimer's"],
"definition": "The specific disease or therapeutic area being targeted. Use for very specific disease queries."
},
{
"field_name": "therapeutic_category_s",
"type": "string (multi-valued, for searching)",
"example_values": ["cancer", "oncology", "infections", "cns"],
"definition": "Broader, multi-valued therapeutic categories and their synonyms. **Use this field for broad category searches** in the `query` parameter."
},
{
"field_name": "compound_name",
"type": "string (exact match, for faceting)",
"example_values": ["opdivo injection solution", "keytruda injection solution"],
"definition": "The specific, full trade name of a drug. **Use this field for `terms` faceting** on compounds."
},
{
"field_name": "compound_name_s",
"type": "string (multi-valued, for searching)",
"example_values": ["nivolumab injection solution", "opdivo injection solution", "ono-4538 injection solution"],
"definition": "A field with all known trade names and synonyms for a drug. **Use this field for all `query` parameter searches** involving a compound name."
},
{
"field_name": "molecule_name",
"type": "string (exact match, for faceting)",
"example_values": ["cannabidiol", "paclitaxel", "pembrolizumab"],
"definition": "The generic, non-proprietary name of the active molecule. **Use this field for `terms` faceting** on molecules."
},
{
"field_name": "molecule_name_s",
"type": "string (multi-valued, for searching)",
"example_values": ["cbd", "s1-220", "a1002n5s"],
"definition": "A field with all known generic names and synonyms for a molecule. **Use this field for all `query` parameter searches** involving a molecule name."
},
{
"field_name": "highest_phase",
"type": "string (categorical)",
"example_values": ["marketed", "phase 2", "phase 1"],
"definition": "The highest stage of development a drug has ever reached."
},
{
"field_name": "drug_delivery_branch_s",
"type": "string (multi-valued, for searching)",
"example_values": ["injection", "parenteral", "oral", "injection, other", "oral, other"],
"definition": "The method of drug administration. **Use this for `query` parameter searches about route of administration** as it contains broader, search-friendly terms."
},
{
"field_name": "drug_delivery_branch",
"type": "string (categorical, specific, for faceting)",
"example_values": ["injection, other", "prefilled syringes", "np liposome", "oral enteric/delayed release"],
"definition": "The most specific category of drug delivery technology. **Use this field for `terms` faceting** on specific delivery technologies."
},
{
"field_name": "route_branch",
"type": "string (categorical)",
"example_values": ["injection", "oral", "topical", "inhalation"],
"definition": "The primary route of drug administration. Good for faceting on exact routes."
},
{
"field_name": "molecule_api_group",
"type": "string (categorical)",
"example_values": ["small molecules", "biologics", "nucleic acids"],
"definition": "High-level classification of the drug's molecular type."
},
{
"field_name": "content",
"type": "text (full-text search)",
"example_values": ["The largest study to date...", "balstilimab..."],
"definition": "The full text content of the news article. Use for keyword searches on topics not covered by other specific fields."
},
{
"field_name": "date",
"type": "date",
"example_values": ["2020-10-22T00:00:00Z"],
"definition": "The full publication date and time in ISO 8601 format. Use for precise date range queries."
},
{
"field_name": "date_year",
"type": "number (year)",
"example_values": [2020, 2021, 2022],
"definition": "The 4-digit year of publication. **Use this for queries involving whole years** (e.g., 'in 2023', 'last year', 'since 2020')."
},
{
"field_name": "total_deal_value_in_million",
"type": "number (metric)",
"example_values": [50, 120.5, 176.157, 1000],
"definition": "The total value of a financial deal, in millions of USD. This is the primary numeric field for financial aggregations (sum, avg, etc.). To use this, you must also filter for news that has a deal value, e.g., 'total_deal_value_in_million:[0 TO *]'."
}
]
# Helper function to format the metadata for the prompt
def format_metadata_for_prompt(metadata):
formatted_string = ""
for field in metadata:
formatted_string += f"- **{field['field_name']}**\n"
formatted_string += f" - **Type**: {field['type']}\n"
formatted_string += f" - **Definition**: {field['definition']}\n"
formatted_string += f" - **Examples**: {', '.join(map(str, field['example_values']))}\n\n"
return formatted_string
formatted_field_info = format_metadata_for_prompt(field_metadata)
def parse_suggestions_from_report(report_text):
"""Extracts numbered suggestions from the report's markdown text."""
suggestions_match = re.search(r"### (?:Deeper Dive: Suggested Follow-up Analyses|Suggestions for Further Exploration)\s*\n(.*?)$", report_text, re.DOTALL | re.IGNORECASE)
if not suggestions_match: return []
suggestions_text = suggestions_match.group(1)
suggestions = re.findall(r"^\s*\d+\.\s*(.*)", suggestions_text, re.MULTILINE)
return [s.strip() for s in suggestions]
def llm_generate_analysis_plan_with_history(natural_language_query, field_metadata, chat_history):
"""
Generates a complete analysis plan from a user query, considering chat history.
This plan includes dimensions, measures, and requests for both quantitative (
facet)
and qualitative (grouping) data.
"""
formatted_history = ""
for user_msg, bot_msg in chat_history:
if user_msg:
formatted_history += f"- User: \"{user_msg}\"\n"
prompt = f"""
You are an expert data analyst and Solr query engineer. Your task is to convert a natural language question into a structured JSON "Analysis Plan". This plan will be used to run two separate, efficient queries: one for aggregate data (facets) and one for finding illustrative examples (grouping).
---
### CONTEXT & RULES
1. **Today's Date for Calculations**: {datetime.datetime.now().date().strftime("%Y-%m-%d")}
2. **Field Usage**: You MUST use the fields described in the 'Field Definitions'. Pay close attention to the definitions to select the correct field, especially the `_s` fields for searching. Do not use fields ending with `_s` in `group.field` or facet `field` unless necessary for the analysis.
3. **Dimension vs. Measure**:
* `analysis_dimension`: The primary categorical field the user wants to group by (e.g., `company_name`, `route_branch`). This is the `group by` field.
* `analysis_measure`: The metric to aggregate (e.g., `sum(total_deal_value_in_million)`) or the method of counting (`count`).
* `sort_field_for_examples`: The raw field used to find the "best" example. If `analysis_measure` is `sum(field)`, this should be `field`. If `analysis_measure` is `count`, this should be a relevant field like `date`.
4. **Crucial Sorting Rules**:
* For `group.sort`: If `analysis_measure` involves a function on a field (e.g., `sum(total_deal_value_in_million)`), you MUST use the full function: `group.sort: 'sum(total_deal_value_in_million) desc'`.
* If `analysis_measure` is 'count', you MUST OMIT the `group.sort` parameter entirely.
* For sorting, NEVER use 'date_year'; use 'date' instead.
5. **Output Format**: Your final output must be a single, raw JSON object. Do not add comments or markdown formatting.
---
### FIELD DEFINITIONS (Your Source of Truth)
{formatted_field_info}
---
### CHAT HISTORY
{formatted_history}
---
### EXAMPLES
**User Query 1:** "What are the top 5 companies by total deal value in 2023?"
**Correct JSON Output 1:**
```json
{{
"analysis_dimension": "company_name",
"analysis_measure": "sum(total_deal_value_in_million)",
"sort_field_for_examples": "total_deal_value_in_million",
"query_filter": "date_year:2023 AND total_deal_value_in_million:[0 TO *]",
"quantitative_request": {{
"json.facet": {{
"companies_by_deal_value": {{
"type": "terms",
"field": "company_name",
"limit": 5,
"sort": "total_value desc",
"facet": {{
"total_value": "sum(total_deal_value_in_million)"
}}
}}
}}
}},
"qualitative_request": {{
"group": true,
"group.field": "company_name",
"group.limit": 1,
"group.sort": "sum(total_deal_value_in_million) desc",
"sort": "total_deal_value_in_million desc"
}}
}}
```
**User Query 2:** "What are the most common news types for infections this year?"
**Correct JSON Output 2:**
```json
{{
"analysis_dimension": "news_type",
"analysis_measure": "count",
"sort_field_for_examples": "date",
"query_filter": "therapeutic_category_s:infections AND date_year:{datetime.datetime.now().year}",
"quantitative_request": {{
"json.facet": {{
"news_by_type": {{
"type": "terms",
"field": "news_type",
"limit": 10,
"sort": "count desc"
}}
}}
}},
"qualitative_request": {{
"group": true,
"group.field": "news_type",
"group.limit": 1,
"sort": "date desc"
}}
}}
```
---
### YOUR TASK
Convert the following user query into a single, raw JSON "Analysis Plan" object, strictly following all rules and considering the chat history.
**Current User Query:** `{natural_language_query}`
"""
try:
response = llm_model.generate_content(prompt)
cleaned_text = re.sub(r'```json\s*|\s*```', '', response.text, flags=re.MULTILINE | re.DOTALL).strip()
plan = json.loads(cleaned_text)
return plan
except Exception as e:
raw_response_text = response.text if 'response' in locals() else 'N/A'
print(f"Error in llm_generate_analysis_plan_with_history: {e}\nRaw Response:\n{raw_response_text}")
return None
def execute_quantitative_query(plan, solr):
"""Executes the facet query to get aggregate data."""
if not plan or 'quantitative_request' not in plan or 'json.facet' not in plan.get('quantitative_request', {}):
return None
try:
params = {
"q": plan.get('query_filter', '*:*'),
"rows": 0,
"json.facet": json.dumps(plan['quantitative_request']['json.facet'])
}
results = solr.search(**params)
return results.raw_response.get("facets", {})
except Exception as e:
print(f"Error in quantitative query: {e}")
return None
def execute_qualitative_query(plan, solr):
"""Executes the grouping query to get the best example docs."""
if not plan or 'qualitative_request' not in plan:
return None
try:
qual_request = copy.deepcopy(plan['qualitative_request'])
params = {
"q": plan.get('query_filter', '*:*'),
"rows": 3, # Get a few examples per group
"fl": "*,score",
**qual_request
}
results = solr.search(**params)
return results.grouped
except Exception as e:
print(f"Error in qualitative query: {e}")
return None
def llm_synthesize_enriched_report_stream(query, quantitative_data, qualitative_data, plan):
"""
Generates an enriched report by synthesizing quantitative aggregates
and qualitative examples, and streams the result.
"""
qualitative_prompt_str = ""
dimension = plan.get('analysis_dimension', 'N/A')
if qualitative_data and dimension in qualitative_data:
for group in qualitative_data.get(dimension, {}).get('groups', []):
group_value = group.get('groupValue', 'N/A')
if group.get('doclist', {}).get('docs'):
doc = group.get('doclist', {}).get('docs', [{}])[0]
title = doc.get('abstract', ['No Title'])
content_list = doc.get('content', [])
content_snip = (' '.join(content_list[0].split()[:40]) + '...') if content_list else 'No content available.'
metric_val_raw = doc.get(plan.get('sort_field_for_examples'), 'N/A')
metric_val = metric_val_raw[0] if isinstance(metric_val_raw, list) else metric_val_raw
qualitative_prompt_str += f"- **For category `{group_value}`:**\n"
qualitative_prompt_str += f" - **Top Example Title:** {title}\n"
qualitative_prompt_str += f" - **Metric Value:** {metric_val}\n"
qualitative_prompt_str += f" - **Content Snippet:** {content_snip}\n\n"
prompt = f"""
You are a top-tier business intelligence analyst. Your task is to write an insightful, data-driven report for an executive. You must synthesize quantitative data (the 'what') with qualitative examples (the 'why') to tell a complete story.
---
### AVAILABLE INFORMATION
**1. The User's Core Question:**
\"{query}\"
**2. Quantitative Data (The 'What'):**
This data shows the high-level aggregates.
```json
{json.dumps(quantitative_data, indent=2)}
```
**3. Qualitative Data (The 'Why'):**
These are the single most significant documents driving the numbers for each category.
{qualitative_prompt_str}
---
### REPORTING INSTRUCTIONS
Your report must be in clean, professional Markdown and follow this structure precisely.
**Report Structure:**
`## Executive Summary`
- A 1-2 sentence, top-line answer to the user's question based on the quantitative data.
`### Key Findings`
- Use bullet points to highlight the main figures from the quantitative data. Interpret the numbers.
`### Key Drivers & Illustrative Examples`
- **This is the most important section.** Explain the "so what?" behind the numbers.
- Use the qualitative examples to explain *why* a category is high or low. Reference the top example document for each main category.
`### Deeper Dive: Suggested Follow-up Analyses`
- Propose 2-3 logical next questions based on your analysis to uncover deeper trends.
---
**Generate the full report now, paying close attention to all formatting and spacing rules.**
"""
try:
response_stream = llm_model.generate_content(prompt, stream=True)
for chunk in response_stream:
yield chunk.text
except Exception as e:
print(f"Error in llm_synthesize_enriched_report_stream: {e}")
yield "Sorry, I was unable to generate a report for this data."
def llm_generate_visualization_code(query_context, facet_data):
"""Generates Python code for visualization based on query and data."""
prompt = f"""
You are a Python Data Visualization expert specializing in Matplotlib and Seaborn.
Your task is to generate robust, error-free Python code to create a single, insightful visualization based on the user's query and the provided Solr facet data.
**User's Analytical Goal:**
\"{query_context}\"
**Aggregated Data (from Solr Facets):**
```json
{json.dumps(facet_data, indent=2)}
```
---
### **CRITICAL INSTRUCTIONS: CODE GENERATION RULES**
You MUST follow these rules to avoid errors.
**1. Identify the Data Structure FIRST:**
Before writing any code, analyze the `facet_data` JSON to determine its structure. There are three common patterns. Choose the correct template below.
* **Pattern A: Simple `terms` Facet.** The JSON has ONE main key (besides "count") which contains a list of "buckets". Each bucket has a "val" and a "count". Use this for standard bar charts.
* **Pattern B: Multiple `query` Facets.** The JSON has MULTIPLE keys (besides "count"), and each key is an object containing metrics like "count" or "sum(...)". Use this for comparing a few distinct items (e.g., "oral vs injection").
* **Pattern C: Nested `terms` Facet.** The JSON has one main key with a list of "buckets", but inside EACH bucket, there are nested metric objects. This is used for grouped comparisons (e.g., "compare 2024 vs 2025 across categories"). This almost always requires `pandas`.
**2. Use the Correct Parsing Template:**
---
**TEMPLATE FOR PATTERN A (Simple Bar Chart from `terms` facet):**
```python
import matplotlib.pyplot as plt
import seaborn as sns
import pandas as pd
plt.style.use('seaborn-v0_8-whitegrid')
fig, ax = plt.subplots(figsize=(12, 8))
# Dynamically find the main facet key (the one with 'buckets')
facet_key = None
for key, value in facet_data.items():
if isinstance(value, dict) and 'buckets' in value:
facet_key = key
break
if facet_key:
buckets = facet_data[facet_key].get('buckets', [])
# Check if buckets contain data
if buckets:
df = pd.DataFrame(buckets)
# Check for a nested metric or use 'count'
if 'total_deal_value' in df.columns and pd.api.types.is_dict_like(df['total_deal_value'].iloc):
# Example for nested sum metric
df['value'] = df['total_deal_value'].apply(lambda x: x.get('sum', 0))
y_axis_label = 'Sum of Total Deal Value'
else:
df.rename(columns={{'count': 'value'}}, inplace=True)
y_axis_label = 'Count'
sns.barplot(data=df, x='val', y='value', ax=ax, palette='viridis')
ax.set_xlabel('Category')
ax.set_ylabel(y_axis_label)
else:
ax.text(0.5, 0.5, 'No data in buckets to plot.', ha='center')
ax.set_title('Your Insightful Title Here')
# Correct way to rotate labels to prevent errors
plt.setp(ax.get_xticklabels(), rotation=45, ha="right", rotation_mode="anchor")
plt.tight_layout()
```
---
**TEMPLATE FOR PATTERN B (Comparison Bar Chart from `query` facets):**
```python
import matplotlib.pyplot as plt
import seaborn as sns
import pandas as pd
plt.style.use('seaborn-v0_8-whitegrid')
fig, ax = plt.subplots(figsize=(10, 6))
labels = []
values = []
# Iterate through top-level keys, skipping the 'count'
for key, data_dict in facet_data.items():
if key == 'count' or not isinstance(data_dict, dict):
continue
# Extract the label (e.g., 'oral_deals' -> 'Oral')
label = key.replace('_deals', '').replace('_', ' ').title()
# Find the metric value, which is NOT 'count'
metric_value = 0
for sub_key, sub_value in data_dict.items():
if sub_key != 'count':
metric_value = sub_value
break # Found the metric
labels.append(label)
values.append(metric_value)
if labels:
sns.barplot(x=labels, y=values, ax=ax, palette='mako')
ax.set_ylabel('Total Deal Value') # Or other metric name
ax.set_xlabel('Category')
else:
ax.text(0.5, 0.5, 'No query facet data to plot.', ha='center')
ax.set_title('Your Insightful Title Here')
plt.tight_layout()
```
---
**TEMPLATE FOR PATTERN C (Grouped Bar Chart from nested `terms` facet):**
```python
import matplotlib.pyplot as plt
import seaborn as sns
import pandas as pd
plt.style.use('seaborn-v0_8-whitegrid')
fig, ax = plt.subplots(figsize=(14, 8))
# Find the key that has the buckets
facet_key = None
for key, value in facet_data.items():
if isinstance(value, dict) and 'buckets' in value:
facet_key = key
break
if facet_key and facet_data[facet_key].get('buckets'):
# This list comprehension is robust for parsing nested metrics
plot_data = []
for bucket in facet_data[facet_key]['buckets']:
category = bucket['val']
# Find all nested metrics (e.g., total_deal_value_2025)
for sub_key, sub_value in bucket.items():
if isinstance(sub_value, dict) and 'sum' in sub_value:
# Extracts year from 'total_deal_value_2025' -> '2025'
year = sub_key.split('_')[-1]
value = sub_value['sum']
plot_data.append({{'Category': category, 'Year': year, 'Value': value}})
if plot_data:
df = pd.DataFrame(plot_data)
sns.barplot(data=df, x='Category', y='Value', hue='Year', ax=ax)
ax.set_ylabel('Total Deal Value')
ax.set_xlabel('Business Model')
# Correct way to rotate labels to prevent errors
plt.setp(ax.get_xticklabels(), rotation=45, ha="right", rotation_mode="anchor")
else:
ax.text(0.5, 0.5, 'No nested data found to plot.', ha='center')
else:
ax.text(0.5, 0.5, 'No data in buckets to plot.', ha='center')
ax.set_title('Your Insightful Title Here')
plt.tight_layout()
```
---
**3. Final Code Generation:**
- **DO NOT** include `plt.show()`.
- **DO** set a dynamic and descriptive `ax.set_title()`, `ax.set_xlabel()`, and `ax.set_ylabel()`.
- **DO NOT** wrap the code in ```python ... ```. Output only the raw Python code.
- Adapt the chosen template to the specific keys and metrics in the provided `facet_data`.
**Your Task:**
Now, generate the Python code.
"""
try:
# Increase the timeout for potentially complex generation
generation_config = genai.types.GenerationConfig(temperature=0, max_output_tokens=2048)
response = llm_model.generate_content(prompt, generation_config=generation_config)
# Clean the response to remove markdown formatting
code = re.sub(r'^```python\s*|```$', '', response.text, flags=re.MULTILINE)
return code
except Exception as e:
print(f"Error in llm_generate_visualization_code: {e}\nRaw response: {response.text}")
return None
def execute_viz_code_and_get_path(viz_code, facet_data):
"""Executes visualization code and returns the path to the saved plot image."""
if not viz_code: return None
try:
if not os.path.exists('/tmp/plots'): os.makedirs('/tmp/plots')
plot_path = f"/tmp/plots/plot_{datetime.datetime.now().timestamp()}.png"
# The exec environment needs access to the required libraries and the data
exec_globals = {'facet_data': facet_data, 'plt': plt, 'sns': sns, 'pd': pd}
exec(viz_code, exec_globals)
fig = exec_globals.get('fig')
if fig:
fig.savefig(plot_path, bbox_inches='tight')
plt.close(fig) # Important to free up memory
return plot_path
return None
except Exception as e:
print(f"ERROR executing visualization code: {e}\n---Code---\n{viz_code}")
return None
def process_analysis_flow(user_input, history, state):
"""
A generator that manages the conversation and yields tuples of UI updates for Gradio.
This version uses the dual-query (quantitative/qualitative) approach.
"""
if state is None:
state = {'query_count': 0, 'last_suggestions': []}
if history is None:
history = []
# Reset UI for new analysis
yield (history, state, gr.update(value=None, visible=False), gr.update(value=None, visible=False), gr.update(value=None, visible=False), gr.update(value=None, visible=False), gr.update(value=None, visible=False))
query_context = user_input.strip()
if not query_context:
history.append((user_input, "Please enter a question to analyze."))
yield (history, state, None, None, None, None, None)
return
# 1. Acknowledge and generate plan
history.append((user_input, f"Analyzing: '{query_context}'\n\n*Generating analysis plan...*"))
yield (history, state, None, None, None, None, None)
analysis_plan = llm_generate_analysis_plan_with_history(query_context, field_metadata, history)
if not analysis_plan:
history.append((None, "I'm sorry, I couldn't generate a valid analysis plan for that request. Please try rephrasing."))
yield (history, state, None, None, None, None, None)
return
history.append((None, "βœ… Analysis plan generated!"))
plan_summary = f"""
* **Analysis Dimension:** `{analysis_plan.get('analysis_dimension')}`
* **Analysis Measure:** `{analysis_plan.get('analysis_measure')}`
* **Query Filter:** `{analysis_plan.get('query_filter')}`
"""
# Show the plan summary in the main chat
history.append((None, plan_summary))
# Put the full plan in the accordion
formatted_plan = f"**Full Analysis Plan:**\n```json\n{json.dumps(analysis_plan, indent=2)}\n```"
yield (history, state, None, None, gr.update(value=formatted_plan, visible=True), None, None)
# 2. Execute Queries in Parallel
history.append((None, "*Executing queries for aggregates and examples...*"))
yield (history, state, None, None, gr.update(value=formatted_plan, visible=True), None, None)
aggregate_data = None
example_data = None
with concurrent.futures.ThreadPoolExecutor() as executor:
future_agg = executor.submit(execute_quantitative_query, analysis_plan, solr_client)
future_ex = executor.submit(execute_qualitative_query, analysis_plan, solr_client)
aggregate_data = future_agg.result()
example_data = future_ex.result()
if not aggregate_data or aggregate_data.get('count', 0) == 0:
history.append((None, "No data was found for your query. Please try a different question."))
yield (history, state, None, None, gr.update(value=formatted_plan, visible=True), None, None)
return
# Display retrieved data in accordions
formatted_agg_data = f"**Quantitative (Aggregate) Data:**\n```json\n{json.dumps(aggregate_data, indent=2)}\n```"
formatted_qual_data = f"**Qualitative (Example) Data:**\n```json\n{json.dumps(example_data, indent=2)}\n```"
qual_data_display_update = gr.update(value=formatted_qual_data, visible=True)
yield (history, state, None, None, gr.update(value=formatted_plan, visible=True), gr.update(value=formatted_agg_data, visible=True), qual_data_display_update)
# 3. Generate Visualization (in parallel with report)
history.append((None, "βœ… Data retrieved. Generating visualization and final report..."))
yield (history, state, None, None, gr.update(value=formatted_plan, visible=True), gr.update(value=formatted_agg_data, visible=True), qual_data_display_update)
with concurrent.futures.ThreadPoolExecutor() as executor:
viz_future = executor.submit(llm_generate_visualization_code, query_context, aggregate_data)
# 4. Generate and Stream Enriched Report
report_text = ""
stream_history = history[:]
for chunk in llm_synthesize_enriched_report_stream(query_context, aggregate_data, example_data, analysis_plan):
report_text += chunk
yield (stream_history, state, None, gr.update(value=report_text, visible=True), gr.update(value=formatted_plan, visible=True), gr.update(value=formatted_agg_data, visible=True), qual_data_display_update)
history.append((None, report_text))
# Get visualization from future
viz_code = viz_future.result()
plot_path = execute_viz_code_and_get_path(viz_code, aggregate_data)
output_plot = gr.update(value=plot_path, visible=True) if plot_path else gr.update(visible=False)
if not plot_path:
history.append((None, "*I was unable to generate a plot for this data.*\n"))
yield (history, state, output_plot, report_text, gr.update(value=formatted_plan, visible=True), gr.update(value=formatted_agg_data, visible=True), qual_data_display_update)
# 5. Finalize
state['query_count'] += 1
state['last_suggestions'] = parse_suggestions_from_report(report_text)
next_prompt = "Analysis complete. What would you like to explore next?"
history.append((None, next_prompt))
yield (history, state, output_plot, report_text, gr.update(value=formatted_plan, visible=True), gr.update(value=formatted_agg_data, visible=True), qual_data_display_update)
# --- Gradio UI ---
with gr.Blocks(theme=gr.themes.Soft(), css="footer {display: none !important}") as demo:
state = gr.State()
with gr.Row():
with gr.Column(scale=4):
gr.Markdown("# πŸ’Š PharmaCircle AI Data Analyst")
with gr.Column(scale=1):
clear_button = gr.Button("πŸ”„ Start New Analysis", variant="primary")
gr.Markdown("Ask a question to begin your analysis. I will generate an analysis plan, retrieve quantitative and qualitative data, create a visualization, and write an enriched report.")
with gr.Row():
with gr.Column(scale=1):
chatbot = gr.Chatbot(label="Analysis Chat Log", height=700, show_copy_button=True)
msg_textbox = gr.Textbox(placeholder="Ask a question, e.g., 'Show me the top 5 companies by total deal value in 2023'", label="Your Question", interactive=True)
with gr.Column(scale=2):
with gr.Accordion("Generated Analysis Plan", open=False):
plan_display = gr.Markdown("Plan will appear here...", visible=True)
with gr.Accordion("Retrieved Quantitative Data", open=False):
quantitative_data_display = gr.Markdown("Aggregate data will appear here...", visible=False)
with gr.Accordion("Retrieved Qualitative Data (Examples)", open=False):
qualitative_data_display = gr.Markdown("Example data will appear here...", visible=False)
plot_display = gr.Image(label="Visualization", type="filepath", visible=False)
report_display = gr.Markdown("Report will be streamed here...", visible=False)
# --- Event Wiring ---
def reset_all():
"""Resets the entire UI for a new analysis session."""
return (
[], # chatbot
None, # state
"", # msg_textbox
gr.update(value=None, visible=False), # plot_display
gr.update(value=None, visible=False), # report_display
gr.update(value=None, visible=False), # plan_display
gr.update(value=None, visible=False), # quantitative_data_display
gr.update(value=None, visible=False) # qualitative_data_display
)
msg_textbox.submit(
fn=process_analysis_flow,
inputs=[msg_textbox, chatbot, state],
outputs=[chatbot, state, plot_display, report_display, plan_display, quantitative_data_display, qualitative_data_display],
).then(
lambda: gr.update(value=""),
None,
[msg_textbox],
queue=False,
)
clear_button.click(
fn=reset_all,
inputs=None,
outputs=[chatbot, state, msg_textbox, plot_display, report_display, plan_display, quantitative_data_display, qualitative_data_display],
queue=False
)
if is_initialized:
demo.queue().launch(debug=True, share=True)
else:
print("\nSkipping Gradio launch due to initialization errors.")