LFM2-1.2B / app.py
dondoesstuff's picture
Upload 3 files
a7e85e8 verified
raw
history blame
6.82 kB
import os
import time
import uuid
from typing import List, Optional, Dict, Any
import torch
from fastapi import FastAPI, HTTPException
from fastapi.responses import RedirectResponse
from pydantic import BaseModel, Field
from transformers import AutoModelForCausalLM, AutoTokenizer
MODEL_ID = os.getenv("MODEL_ID", "LiquidAI/LFM2-1.2B")
DEFAULT_MAX_TOKENS = int(os.getenv("MAX_TOKENS", "256"))
app = FastAPI(title="OpenAI-compatible API for LiquidAI/LFM2-1.2B")
tokenizer = None
model = None
def get_dtype() -> torch.dtype:
if torch.cuda.is_available():
# Prefer bfloat16 if supported; else float16
if torch.cuda.is_bf16_supported():
return torch.bfloat16
return torch.float16
# CPU
return torch.float32
@app.on_event("startup")
def load_model():
global tokenizer, model
dtype = get_dtype()
tokenizer = AutoTokenizer.from_pretrained(MODEL_ID, use_fast=True, trust_remote_code=True)
model = AutoModelForCausalLM.from_pretrained(
MODEL_ID,
torch_dtype=dtype,
device_map="auto",
trust_remote_code=True,
)
# Ensure eos/bos tokens exist
if tokenizer.eos_token is None:
tokenizer.eos_token = tokenizer.sep_token or tokenizer.pad_token or "</s>"
if tokenizer.pad_token is None:
tokenizer.pad_token = tokenizer.eos_token
class ChatMessage(BaseModel):
role: str
content: str
class ChatCompletionRequest(BaseModel):
model: Optional[str] = Field(default=MODEL_ID)
messages: List[ChatMessage]
temperature: Optional[float] = 0.7
top_p: Optional[float] = 0.95
max_tokens: Optional[int] = None
stop: Optional[List[str] | str] = None
n: Optional[int] = 1
class CompletionRequest(BaseModel):
model: Optional[str] = Field(default=MODEL_ID)
prompt: str | List[str]
temperature: Optional[float] = 0.7
top_p: Optional[float] = 0.95
max_tokens: Optional[int] = None
stop: Optional[List[str] | str] = None
n: Optional[int] = 1
class Usage(BaseModel):
prompt_tokens: int
completion_tokens: int
total_tokens: int
# Simple chat prompt formatter
def build_chat_prompt(messages: List[ChatMessage]) -> str:
system_prefix = "You are a helpful assistant."
system_msgs = [m.content for m in messages if m.role == "system"]
if system_msgs:
system_prefix = system_msgs[-1]
conv: List[str] = [f"System: {system_prefix}"]
for m in messages:
if m.role == "system":
continue
role = "User" if m.role == "user" else ("Assistant" if m.role == "assistant" else m.role.capitalize())
conv.append(f"{role}: {m.content}")
conv.append("Assistant:")
return "\n".join(conv)
def apply_stop_sequences(text: str, stop: Optional[List[str] | str]) -> str:
if stop is None:
return text
stops = stop if isinstance(stop, list) else [stop]
cut = len(text)
for s in stops:
if not s:
continue
idx = text.find(s)
if idx != -1:
cut = min(cut, idx)
return text[:cut]
def generate_once(prompt: str, temperature: float, top_p: float, max_new_tokens: int) -> Dict[str, Any]:
assert tokenizer is not None and model is not None, "Model not loaded"
inputs = tokenizer(prompt, return_tensors="pt").to(model.device)
gen_ids = model.generate(
**inputs,
max_new_tokens=max_new_tokens,
do_sample=True if temperature and temperature > 0 else False,
temperature=max(0.0, float(temperature or 0.0)),
top_p=max(0.0, float(top_p or 1.0)),
pad_token_id=tokenizer.pad_token_id,
eos_token_id=tokenizer.eos_token_id,
)
out = tokenizer.decode(gen_ids[0][inputs["input_ids"].shape[-1]:], skip_special_tokens=True)
return {
"text": out,
"prompt_tokens": inputs["input_ids"].numel(),
"completion_tokens": gen_ids[0].shape[0] - inputs["input_ids"].shape[-1],
}
@app.get("/")
def root():
return RedirectResponse(url="/docs")
@app.get("/health")
def health():
return {"status": "ok", "model": MODEL_ID}
@app.post("/v1/chat/completions")
def chat_completions(req: ChatCompletionRequest):
if req.n and req.n > 1:
raise HTTPException(status_code=400, detail="Only n=1 is supported in this simple server.")
max_new = req.max_tokens or DEFAULT_MAX_TOKENS
prompt = build_chat_prompt(req.messages)
g = generate_once(prompt, req.temperature or 0.7, req.top_p or 0.95, max_new)
text = apply_stop_sequences(g["text"], req.stop)
created = int(time.time())
comp_id = f"chatcmpl-{uuid.uuid4().hex[:24]}"
usage = Usage(
prompt_tokens=g["prompt_tokens"],
completion_tokens=g["completion_tokens"],
total_tokens=g["prompt_tokens"] + g["completion_tokens"],
)
return {
"id": comp_id,
"object": "chat.completion",
"created": created,
"model": req.model or MODEL_ID,
"choices": [
{
"index": 0,
"message": {"role": "assistant", "content": text},
"finish_reason": "stop",
}
],
"usage": usage.dict(),
}
@app.post("/v1/completions")
def completions(req: CompletionRequest):
if req.n and req.n > 1:
raise HTTPException(status_code=400, detail="Only n=1 is supported in this simple server.")
prompts = req.prompt if isinstance(req.prompt, list) else [req.prompt]
if len(prompts) != 1:
raise HTTPException(status_code=400, detail="Only a single prompt is supported in this simple server.")
max_new = req.max_tokens or DEFAULT_MAX_TOKENS
g = generate_once(prompts[0], req.temperature or 0.7, req.top_p or 0.95, max_new)
text = apply_stop_sequences(g["text"], req.stop)
created = int(time.time())
comp_id = f"cmpl-{uuid.uuid4().hex[:24]}"
usage = Usage(
prompt_tokens=g["prompt_tokens"],
completion_tokens=g["completion_tokens"],
total_tokens=g["prompt_tokens"] + g["completion_tokens"],
)
return {
"id": comp_id,
"object": "text_completion",
"created": created,
"model": req.model or MODEL_ID,
"choices": [
{
"index": 0,
"text": text,
"finish_reason": "stop",
"logprobs": None,
}
],
"usage": usage.dict(),
}
if __name__ == "__main__":
import uvicorn
port = int(os.getenv("PORT", "7860"))
uvicorn.run("app:app", host="0.0.0.0", port=port, reload=False)