Spaces:
Running
on
CPU Upgrade
Running
on
CPU Upgrade
import json | |
import os | |
from datetime import datetime, timezone | |
import time | |
from datasets import Dataset | |
import pandas as pd | |
from src.datamodel.data import F1Data | |
from src.display.formatting import styled_error, styled_message, styled_warning | |
from src.display.utils import ModelType | |
from src.envs import API, SUBMISSIONS_REPO, TOKEN | |
from src.logger import get_logger | |
# from src.submission.check_validity import ( | |
# already_submitted_models, | |
# check_model_card, | |
# get_model_size, | |
# is_model_on_hub, | |
# ) | |
logger = get_logger(__name__) | |
def validate_submission(lbdb: F1Data, pd_ds: pd.DataFrame) -> str | None: | |
logger.info("Validating DS size %d columns %s set %s", len(pd_ds), pd_ds.columns, set(pd_ds.columns)) | |
expected_cols = ["formula_name", "solution"] | |
if set(pd_ds.columns) != set(expected_cols): | |
return f"Expected attributes: {expected_cols}, Got: {pd_ds.columns.tolist()}" | |
if any(type(v) != str for v in pd_ds["formula_name"]): | |
return "Not all formula_name values are of type str" | |
if any(type(v) != str for v in pd_ds["solution"]): | |
return "Not all solution values are of type str" | |
submitted_formulas = set(pd_ds["formula_name"]) | |
if submitted_formulas != lbdb.code_problem_formulas: | |
missing = lbdb.code_problem_formulas - submitted_formulas | |
unknown = submitted_formulas - lbdb.code_problem_formulas | |
return f"Mismatched formula names: {len(missing)} missing, {len(unknown)} unknown" | |
if len(pd_ds) > len(lbdb.code_problem_formulas): | |
return "Duplicate formula solutions exist in uploaded file" | |
return None | |
def add_new_solutions( | |
lbdb: F1Data, | |
system_name : str, | |
org: str, | |
sys_type: str, | |
submission_path: str, | |
): | |
logger.info("ADD SUBMISSION! %s path %s", str((system_name, org, sys_type)), submission_path) | |
if not system_name: | |
return styled_error("Please fill system name") | |
if not org: | |
return styled_error("Please fill organization name") | |
if not sys_type: | |
return styled_error("Please select system type") | |
sys_type = ModelType.from_str(sys_type).name | |
if not submission_path: | |
return styled_error("Please upload JSONL solutions file") | |
try: | |
submission_df = pd.read_json(submission_path, lines=True) | |
except Exception as e: | |
return styled_error(f"Cannot read uploaded JSONL file: {str(e)}") | |
validation_error = validate_submission(lbdb, submission_df) | |
if validation_error: | |
return styled_error(validation_error) | |
submission_id = f"{system_name}_{org}_{sys_type}_{datetime.now(timezone.utc).strftime('%Y%m%d_%H%M%S')}" | |
# Seems good, creating the eval | |
print(f"Adding new submission: {submission_id}") | |
submission_ts = time.time_ns() | |
def add_info(row): | |
row["system_name"] = system_name | |
row["organization"] = org | |
row["system_type"] = sys_type | |
row["submission_id"] = submission_id | |
row["submission_ts"] = submission_ts | |
ds = Dataset.from_pandas(submission_df).map(add_info) | |
ds.push_to_hub(SUBMISSIONS_REPO, submission_id, private=True) | |
# print("Creating eval file") | |
# OUT_DIR = f"{EVAL_REQUESTS_PATH}/{user_name}" | |
# os.makedirs(OUT_DIR, exist_ok=True) | |
# out_path = f"{OUT_DIR}/{model_path}_eval_request_False_{precision}_{weight_type}.json" | |
# with open(out_path, "w") as f: | |
# f.write(json.dumps(eval_entry)) | |
# print("Uploading eval file") | |
# API.upload_file( | |
# path_or_fileobj=out_path, | |
# path_in_repo=out_path.split("eval-queue/")[1], | |
# repo_id=QUEUE_REPO, | |
# repo_type="dataset", | |
# commit_message=f"Add {model} to eval queue", | |
# ) | |
# # Remove the local file | |
# os.remove(out_path) | |
return styled_message( | |
"Your request has been submitted to the evaluation queue!\nPlease wait for up to an hour for the model to show in the PENDING list." | |
) | |