Alvinn-aai's picture
data upload script, support both splits
8cfcd49
raw
history blame
3.93 kB
import json
import os
from datetime import datetime, timezone
import time
from datasets import Dataset
import pandas as pd
from src.datamodel.data import F1Data
from src.display.formatting import styled_error, styled_message, styled_warning
from src.display.utils import ModelType
from src.envs import API, SUBMISSIONS_REPO, TOKEN
from src.logger import get_logger
# from src.submission.check_validity import (
# already_submitted_models,
# check_model_card,
# get_model_size,
# is_model_on_hub,
# )
logger = get_logger(__name__)
def validate_submission(lbdb: F1Data, pd_ds: pd.DataFrame) -> str | None:
logger.info("Validating DS size %d columns %s set %s", len(pd_ds), pd_ds.columns, set(pd_ds.columns))
expected_cols = ["formula_name", "solution"]
if set(pd_ds.columns) != set(expected_cols):
return f"Expected attributes: {expected_cols}, Got: {pd_ds.columns.tolist()}"
if any(type(v) != str for v in pd_ds["formula_name"]):
return "Not all formula_name values are of type str"
if any(type(v) != str for v in pd_ds["solution"]):
return "Not all solution values are of type str"
submitted_formulas = set(pd_ds["formula_name"])
if submitted_formulas != lbdb.code_problem_formulas:
missing = lbdb.code_problem_formulas - submitted_formulas
unknown = submitted_formulas - lbdb.code_problem_formulas
return f"Mismatched formula names: {len(missing)} missing, {len(unknown)} unknown"
if len(pd_ds) > len(lbdb.code_problem_formulas):
return "Duplicate formula solutions exist in uploaded file"
return None
def add_new_solutions(
lbdb: F1Data,
system_name : str,
org: str,
sys_type: str,
submission_path: str,
):
logger.info("ADD SUBMISSION! %s path %s", str((system_name, org, sys_type)), submission_path)
if not system_name:
return styled_error("Please fill system name")
if not org:
return styled_error("Please fill organization name")
if not sys_type:
return styled_error("Please select system type")
sys_type = ModelType.from_str(sys_type).name
if not submission_path:
return styled_error("Please upload JSONL solutions file")
try:
submission_df = pd.read_json(submission_path, lines=True)
except Exception as e:
return styled_error(f"Cannot read uploaded JSONL file: {str(e)}")
validation_error = validate_submission(lbdb, submission_df)
if validation_error:
return styled_error(validation_error)
submission_id = f"{system_name}_{org}_{sys_type}_{datetime.now(timezone.utc).strftime('%Y%m%d_%H%M%S')}"
# Seems good, creating the eval
print(f"Adding new submission: {submission_id}")
submission_ts = time.time_ns()
def add_info(row):
row["system_name"] = system_name
row["organization"] = org
row["system_type"] = sys_type
row["submission_id"] = submission_id
row["submission_ts"] = submission_ts
ds = Dataset.from_pandas(submission_df).map(add_info)
ds.push_to_hub(SUBMISSIONS_REPO, submission_id, private=True)
# print("Creating eval file")
# OUT_DIR = f"{EVAL_REQUESTS_PATH}/{user_name}"
# os.makedirs(OUT_DIR, exist_ok=True)
# out_path = f"{OUT_DIR}/{model_path}_eval_request_False_{precision}_{weight_type}.json"
# with open(out_path, "w") as f:
# f.write(json.dumps(eval_entry))
# print("Uploading eval file")
# API.upload_file(
# path_or_fileobj=out_path,
# path_in_repo=out_path.split("eval-queue/")[1],
# repo_id=QUEUE_REPO,
# repo_type="dataset",
# commit_message=f"Add {model} to eval queue",
# )
# # Remove the local file
# os.remove(out_path)
return styled_message(
"Your request has been submitted to the evaluation queue!\nPlease wait for up to an hour for the model to show in the PENDING list."
)