Spaces:
Runtime error
Runtime error
# Copyright (c) Facebook, Inc. and its affiliates. All Rights Reserved | |
import copy | |
import logging | |
import numpy as np | |
import operator | |
import torch | |
import torch.utils.data | |
import json | |
from detectron2.utils.comm import get_world_size | |
from detectron2.data import samplers | |
from torch.utils.data.sampler import BatchSampler, Sampler | |
from detectron2.data.common import DatasetFromList, MapDataset | |
from detectron2.data.dataset_mapper import DatasetMapper | |
from detectron2.data.build import get_detection_dataset_dicts, build_batch_data_loader | |
from detectron2.data.samplers import TrainingSampler, RepeatFactorTrainingSampler | |
from detectron2.data.build import worker_init_reset_seed, print_instances_class_histogram | |
from detectron2.data.build import filter_images_with_only_crowd_annotations | |
from detectron2.data.build import filter_images_with_few_keypoints | |
from detectron2.data.build import check_metadata_consistency | |
from detectron2.data.catalog import MetadataCatalog, DatasetCatalog | |
from detectron2.utils import comm | |
import itertools | |
import math | |
from collections import defaultdict | |
from typing import Optional | |
# from .custom_build_augmentation import build_custom_augmentation | |
def build_custom_train_loader(cfg, mapper=None): | |
""" | |
Modified from detectron2.data.build.build_custom_train_loader, but supports | |
different samplers | |
""" | |
source_aware = cfg.DATALOADER.SOURCE_AWARE | |
if source_aware: | |
dataset_dicts = get_detection_dataset_dicts_with_source( | |
cfg.DATASETS.TRAIN, | |
filter_empty=cfg.DATALOADER.FILTER_EMPTY_ANNOTATIONS, | |
min_keypoints=cfg.MODEL.ROI_KEYPOINT_HEAD.MIN_KEYPOINTS_PER_IMAGE | |
if cfg.MODEL.KEYPOINT_ON | |
else 0, | |
proposal_files=cfg.DATASETS.PROPOSAL_FILES_TRAIN if cfg.MODEL.LOAD_PROPOSALS else None, | |
) | |
sizes = [0 for _ in range(len(cfg.DATASETS.TRAIN))] | |
for d in dataset_dicts: | |
sizes[d['dataset_source']] += 1 | |
print('dataset sizes', sizes) | |
else: | |
dataset_dicts = get_detection_dataset_dicts( | |
cfg.DATASETS.TRAIN, | |
filter_empty=cfg.DATALOADER.FILTER_EMPTY_ANNOTATIONS, | |
min_keypoints=cfg.MODEL.ROI_KEYPOINT_HEAD.MIN_KEYPOINTS_PER_IMAGE | |
if cfg.MODEL.KEYPOINT_ON | |
else 0, | |
proposal_files=cfg.DATASETS.PROPOSAL_FILES_TRAIN if cfg.MODEL.LOAD_PROPOSALS else None, | |
) | |
dataset = DatasetFromList(dataset_dicts, copy=False) | |
if mapper is None: | |
assert 0 | |
# mapper = DatasetMapper(cfg, True) | |
dataset = MapDataset(dataset, mapper) | |
sampler_name = cfg.DATALOADER.SAMPLER_TRAIN | |
logger = logging.getLogger(__name__) | |
logger.info("Using training sampler {}".format(sampler_name)) | |
# TODO avoid if-else? | |
if sampler_name == "TrainingSampler": | |
sampler = TrainingSampler(len(dataset)) | |
elif sampler_name == "MultiDatasetSampler": | |
assert source_aware | |
sampler = MultiDatasetSampler(cfg, sizes, dataset_dicts) | |
elif sampler_name == "RepeatFactorTrainingSampler": | |
repeat_factors = RepeatFactorTrainingSampler.repeat_factors_from_category_frequency( | |
dataset_dicts, cfg.DATALOADER.REPEAT_THRESHOLD | |
) | |
sampler = RepeatFactorTrainingSampler(repeat_factors) | |
elif sampler_name == "ClassAwareSampler": | |
sampler = ClassAwareSampler(dataset_dicts) | |
else: | |
raise ValueError("Unknown training sampler: {}".format(sampler_name)) | |
return build_batch_data_loader( | |
dataset, | |
sampler, | |
cfg.SOLVER.IMS_PER_BATCH, | |
aspect_ratio_grouping=cfg.DATALOADER.ASPECT_RATIO_GROUPING, | |
num_workers=cfg.DATALOADER.NUM_WORKERS, | |
) | |
class ClassAwareSampler(Sampler): | |
def __init__(self, dataset_dicts, seed: Optional[int] = None): | |
""" | |
Args: | |
size (int): the total number of data of the underlying dataset to sample from | |
seed (int): the initial seed of the shuffle. Must be the same | |
across all workers. If None, will use a random seed shared | |
among workers (require synchronization among all workers). | |
""" | |
self._size = len(dataset_dicts) | |
assert self._size > 0 | |
if seed is None: | |
seed = comm.shared_random_seed() | |
self._seed = int(seed) | |
self._rank = comm.get_rank() | |
self._world_size = comm.get_world_size() | |
self.weights = self._get_class_balance_factor(dataset_dicts) | |
def __iter__(self): | |
start = self._rank | |
yield from itertools.islice( | |
self._infinite_indices(), start, None, self._world_size) | |
def _infinite_indices(self): | |
g = torch.Generator() | |
g.manual_seed(self._seed) | |
while True: | |
ids = torch.multinomial( | |
self.weights, self._size, generator=g, | |
replacement=True) | |
yield from ids | |
def _get_class_balance_factor(self, dataset_dicts, l=1.): | |
# 1. For each category c, compute the fraction of images that contain it: f(c) | |
ret = [] | |
category_freq = defaultdict(int) | |
for dataset_dict in dataset_dicts: # For each image (without repeats) | |
cat_ids = {ann["category_id"] for ann in dataset_dict["annotations"]} | |
for cat_id in cat_ids: | |
category_freq[cat_id] += 1 | |
for i, dataset_dict in enumerate(dataset_dicts): | |
cat_ids = {ann["category_id"] for ann in dataset_dict["annotations"]} | |
ret.append(sum( | |
[1. / (category_freq[cat_id] ** l) for cat_id in cat_ids])) | |
return torch.tensor(ret).float() | |
def get_detection_dataset_dicts_with_source( | |
dataset_names, filter_empty=True, min_keypoints=0, proposal_files=None | |
): | |
assert len(dataset_names) | |
dataset_dicts = [DatasetCatalog.get(dataset_name) for dataset_name in dataset_names] | |
for dataset_name, dicts in zip(dataset_names, dataset_dicts): | |
assert len(dicts), "Dataset '{}' is empty!".format(dataset_name) | |
for source_id, (dataset_name, dicts) in \ | |
enumerate(zip(dataset_names, dataset_dicts)): | |
assert len(dicts), "Dataset '{}' is empty!".format(dataset_name) | |
for d in dicts: | |
d['dataset_source'] = source_id | |
if "annotations" in dicts[0]: | |
try: | |
class_names = MetadataCatalog.get(dataset_name).thing_classes | |
check_metadata_consistency("thing_classes", dataset_name) | |
print_instances_class_histogram(dicts, class_names) | |
except AttributeError: # class names are not available for this dataset | |
pass | |
assert proposal_files is None | |
dataset_dicts = list(itertools.chain.from_iterable(dataset_dicts)) | |
has_instances = "annotations" in dataset_dicts[0] | |
if filter_empty and has_instances: | |
dataset_dicts = filter_images_with_only_crowd_annotations(dataset_dicts) | |
if min_keypoints > 0 and has_instances: | |
dataset_dicts = filter_images_with_few_keypoints(dataset_dicts, min_keypoints) | |
return dataset_dicts | |
class MultiDatasetSampler(Sampler): | |
def __init__(self, cfg, sizes, dataset_dicts, seed: Optional[int] = None): | |
""" | |
Args: | |
size (int): the total number of data of the underlying dataset to sample from | |
seed (int): the initial seed of the shuffle. Must be the same | |
across all workers. If None, will use a random seed shared | |
among workers (require synchronization among all workers). | |
""" | |
self.sizes = sizes | |
dataset_ratio = cfg.DATALOADER.DATASET_RATIO | |
self._batch_size = cfg.SOLVER.IMS_PER_BATCH | |
assert len(dataset_ratio) == len(sizes), \ | |
'length of dataset ratio {} should be equal to number if dataset {}'.format( | |
len(dataset_ratio), len(sizes) | |
) | |
if seed is None: | |
seed = comm.shared_random_seed() | |
self._seed = int(seed) | |
self._rank = comm.get_rank() | |
self._world_size = comm.get_world_size() | |
self._ims_per_gpu = self._batch_size // self._world_size | |
self.dataset_ids = torch.tensor( | |
[d['dataset_source'] for d in dataset_dicts], dtype=torch.long) | |
dataset_weight = [torch.ones(s) * max(sizes) / s * r / sum(dataset_ratio) \ | |
for i, (r, s) in enumerate(zip(dataset_ratio, sizes))] | |
dataset_weight = torch.cat(dataset_weight) | |
self.weights = dataset_weight | |
self.sample_epoch_size = len(self.weights) | |
def __iter__(self): | |
start = self._rank | |
yield from itertools.islice( | |
self._infinite_indices(), start, None, self._world_size) | |
def _infinite_indices(self): | |
g = torch.Generator() | |
g.manual_seed(self._seed) | |
while True: | |
ids = torch.multinomial( | |
self.weights, self.sample_epoch_size, generator=g, | |
replacement=True) | |
nums = [(self.dataset_ids[ids] == i).sum().int().item() \ | |
for i in range(len(self.sizes))] | |
print('_rank, len, nums', self._rank, len(ids), nums, flush=True) | |
# print('_rank, len, nums, self.dataset_ids[ids[:10]], ', | |
# self._rank, len(ids), nums, self.dataset_ids[ids[:10]], | |
# flush=True) | |
yield from ids |