joonhyun23452's picture
open proxydet demo
8075387
import numpy as np
import math
from os.path import join
import fvcore.nn.weight_init as weight_init
import torch
import torch.nn.functional as F
from torch import nn
import torch.utils.model_zoo as model_zoo
from detectron2.modeling.backbone.resnet import (
BasicStem, BottleneckBlock, DeformBottleneckBlock)
from detectron2.layers import (
Conv2d,
DeformConv,
FrozenBatchNorm2d,
ModulatedDeformConv,
ShapeSpec,
get_norm,
)
from detectron2.modeling.backbone.backbone import Backbone
from detectron2.modeling.backbone.build import BACKBONE_REGISTRY
from detectron2.modeling.backbone.fpn import FPN
__all__ = [
"BottleneckBlock",
"DeformBottleneckBlock",
"BasicStem",
]
DCNV1 = False
HASH = {
34: 'ba72cf86',
60: '24839fc4',
}
def get_model_url(data, name, hash):
return join('http://dl.yf.io/dla/models', data, '{}-{}.pth'.format(name, hash))
class BasicBlock(nn.Module):
def __init__(self, inplanes, planes, stride=1, dilation=1, norm='BN'):
super(BasicBlock, self).__init__()
self.conv1 = nn.Conv2d(inplanes, planes, kernel_size=3,
stride=stride, padding=dilation,
bias=False, dilation=dilation)
self.bn1 = get_norm(norm, planes)
self.relu = nn.ReLU(inplace=True)
self.conv2 = nn.Conv2d(planes, planes, kernel_size=3,
stride=1, padding=dilation,
bias=False, dilation=dilation)
self.bn2 = get_norm(norm, planes)
self.stride = stride
def forward(self, x, residual=None):
if residual is None:
residual = x
out = self.conv1(x)
out = self.bn1(out)
out = self.relu(out)
out = self.conv2(out)
out = self.bn2(out)
out += residual
out = self.relu(out)
return out
class Bottleneck(nn.Module):
expansion = 2
def __init__(self, inplanes, planes, stride=1, dilation=1, norm='BN'):
super(Bottleneck, self).__init__()
expansion = Bottleneck.expansion
bottle_planes = planes // expansion
self.conv1 = nn.Conv2d(inplanes, bottle_planes,
kernel_size=1, bias=False)
self.bn1 = get_norm(norm, bottle_planes)
self.conv2 = nn.Conv2d(bottle_planes, bottle_planes, kernel_size=3,
stride=stride, padding=dilation,
bias=False, dilation=dilation)
self.bn2 = get_norm(norm, bottle_planes)
self.conv3 = nn.Conv2d(bottle_planes, planes,
kernel_size=1, bias=False)
self.bn3 = get_norm(norm, planes)
self.relu = nn.ReLU(inplace=True)
self.stride = stride
def forward(self, x, residual=None):
if residual is None:
residual = x
out = self.conv1(x)
out = self.bn1(out)
out = self.relu(out)
out = self.conv2(out)
out = self.bn2(out)
out = self.relu(out)
out = self.conv3(out)
out = self.bn3(out)
out += residual
out = self.relu(out)
return out
class Root(nn.Module):
def __init__(self, in_channels, out_channels, kernel_size, residual, norm='BN'):
super(Root, self).__init__()
self.conv = nn.Conv2d(
in_channels, out_channels, 1,
stride=1, bias=False, padding=(kernel_size - 1) // 2)
self.bn = get_norm(norm, out_channels)
self.relu = nn.ReLU(inplace=True)
self.residual = residual
def forward(self, *x):
children = x
x = self.conv(torch.cat(x, 1))
x = self.bn(x)
if self.residual:
x += children[0]
x = self.relu(x)
return x
class Tree(nn.Module):
def __init__(self, levels, block, in_channels, out_channels, stride=1,
level_root=False, root_dim=0, root_kernel_size=1,
dilation=1, root_residual=False, norm='BN'):
super(Tree, self).__init__()
if root_dim == 0:
root_dim = 2 * out_channels
if level_root:
root_dim += in_channels
if levels == 1:
self.tree1 = block(in_channels, out_channels, stride,
dilation=dilation, norm=norm)
self.tree2 = block(out_channels, out_channels, 1,
dilation=dilation, norm=norm)
else:
self.tree1 = Tree(levels - 1, block, in_channels, out_channels,
stride, root_dim=0,
root_kernel_size=root_kernel_size,
dilation=dilation, root_residual=root_residual,
norm=norm)
self.tree2 = Tree(levels - 1, block, out_channels, out_channels,
root_dim=root_dim + out_channels,
root_kernel_size=root_kernel_size,
dilation=dilation, root_residual=root_residual,
norm=norm)
if levels == 1:
self.root = Root(root_dim, out_channels, root_kernel_size,
root_residual, norm=norm)
self.level_root = level_root
self.root_dim = root_dim
self.downsample = None
self.project = None
self.levels = levels
if stride > 1:
self.downsample = nn.MaxPool2d(stride, stride=stride)
if in_channels != out_channels:
self.project = nn.Sequential(
nn.Conv2d(in_channels, out_channels,
kernel_size=1, stride=1, bias=False),
get_norm(norm, out_channels)
)
def forward(self, x, residual=None, children=None):
children = [] if children is None else children
bottom = self.downsample(x) if self.downsample else x
residual = self.project(bottom) if self.project else bottom
if self.level_root:
children.append(bottom)
x1 = self.tree1(x, residual)
if self.levels == 1:
x2 = self.tree2(x1)
x = self.root(x2, x1, *children)
else:
children.append(x1)
x = self.tree2(x1, children=children)
return x
class DLA(nn.Module):
def __init__(self, num_layers, levels, channels,
block=BasicBlock, residual_root=False, norm='BN'):
"""
Args:
"""
super(DLA, self).__init__()
self.norm = norm
self.channels = channels
self.base_layer = nn.Sequential(
nn.Conv2d(3, channels[0], kernel_size=7, stride=1,
padding=3, bias=False),
get_norm(self.norm, channels[0]),
nn.ReLU(inplace=True))
self.level0 = self._make_conv_level(
channels[0], channels[0], levels[0])
self.level1 = self._make_conv_level(
channels[0], channels[1], levels[1], stride=2)
self.level2 = Tree(levels[2], block, channels[1], channels[2], 2,
level_root=False,
root_residual=residual_root, norm=norm)
self.level3 = Tree(levels[3], block, channels[2], channels[3], 2,
level_root=True, root_residual=residual_root,
norm=norm)
self.level4 = Tree(levels[4], block, channels[3], channels[4], 2,
level_root=True, root_residual=residual_root,
norm=norm)
self.level5 = Tree(levels[5], block, channels[4], channels[5], 2,
level_root=True, root_residual=residual_root,
norm=norm)
self.load_pretrained_model(
data='imagenet', name='dla{}'.format(num_layers),
hash=HASH[num_layers])
def load_pretrained_model(self, data, name, hash):
model_url = get_model_url(data, name, hash)
model_weights = model_zoo.load_url(model_url)
num_classes = len(model_weights[list(model_weights.keys())[-1]])
self.fc = nn.Conv2d(
self.channels[-1], num_classes,
kernel_size=1, stride=1, padding=0, bias=True)
print('Loading pretrained')
self.load_state_dict(model_weights, strict=False)
def _make_conv_level(self, inplanes, planes, convs, stride=1, dilation=1):
modules = []
for i in range(convs):
modules.extend([
nn.Conv2d(inplanes, planes, kernel_size=3,
stride=stride if i == 0 else 1,
padding=dilation, bias=False, dilation=dilation),
get_norm(self.norm, planes),
nn.ReLU(inplace=True)])
inplanes = planes
return nn.Sequential(*modules)
def forward(self, x):
y = []
x = self.base_layer(x)
for i in range(6):
x = getattr(self, 'level{}'.format(i))(x)
y.append(x)
return y
def fill_up_weights(up):
w = up.weight.data
f = math.ceil(w.size(2) / 2)
c = (2 * f - 1 - f % 2) / (2. * f)
for i in range(w.size(2)):
for j in range(w.size(3)):
w[0, 0, i, j] = \
(1 - math.fabs(i / f - c)) * (1 - math.fabs(j / f - c))
for c in range(1, w.size(0)):
w[c, 0, :, :] = w[0, 0, :, :]
class _DeformConv(nn.Module):
def __init__(self, chi, cho, norm='BN'):
super(_DeformConv, self).__init__()
self.actf = nn.Sequential(
get_norm(norm, cho),
nn.ReLU(inplace=True)
)
if DCNV1:
self.offset = Conv2d(
chi, 18, kernel_size=3, stride=1,
padding=1, dilation=1)
self.conv = DeformConv(
chi, cho, kernel_size=(3,3), stride=1, padding=1,
dilation=1, deformable_groups=1)
else:
self.offset = Conv2d(
chi, 27, kernel_size=3, stride=1,
padding=1, dilation=1)
self.conv = ModulatedDeformConv(
chi, cho, kernel_size=3, stride=1, padding=1,
dilation=1, deformable_groups=1)
nn.init.constant_(self.offset.weight, 0)
nn.init.constant_(self.offset.bias, 0)
def forward(self, x):
if DCNV1:
offset = self.offset(x)
x = self.conv(x, offset)
else:
offset_mask = self.offset(x)
offset_x, offset_y, mask = torch.chunk(offset_mask, 3, dim=1)
offset = torch.cat((offset_x, offset_y), dim=1)
mask = mask.sigmoid()
x = self.conv(x, offset, mask)
x = self.actf(x)
return x
class IDAUp(nn.Module):
def __init__(self, o, channels, up_f, norm='BN'):
super(IDAUp, self).__init__()
for i in range(1, len(channels)):
c = channels[i]
f = int(up_f[i])
proj = _DeformConv(c, o, norm=norm)
node = _DeformConv(o, o, norm=norm)
up = nn.ConvTranspose2d(o, o, f * 2, stride=f,
padding=f // 2, output_padding=0,
groups=o, bias=False)
fill_up_weights(up)
setattr(self, 'proj_' + str(i), proj)
setattr(self, 'up_' + str(i), up)
setattr(self, 'node_' + str(i), node)
def forward(self, layers, startp, endp):
for i in range(startp + 1, endp):
upsample = getattr(self, 'up_' + str(i - startp))
project = getattr(self, 'proj_' + str(i - startp))
layers[i] = upsample(project(layers[i]))
node = getattr(self, 'node_' + str(i - startp))
layers[i] = node(layers[i] + layers[i - 1])
class DLAUp(nn.Module):
def __init__(self, startp, channels, scales, in_channels=None, norm='BN'):
super(DLAUp, self).__init__()
self.startp = startp
if in_channels is None:
in_channels = channels
self.channels = channels
channels = list(channels)
scales = np.array(scales, dtype=int)
for i in range(len(channels) - 1):
j = -i - 2
setattr(self, 'ida_{}'.format(i),
IDAUp(channels[j], in_channels[j:],
scales[j:] // scales[j], norm=norm))
scales[j + 1:] = scales[j]
in_channels[j + 1:] = [channels[j] for _ in channels[j + 1:]]
def forward(self, layers):
out = [layers[-1]] # start with 32
for i in range(len(layers) - self.startp - 1):
ida = getattr(self, 'ida_{}'.format(i))
ida(layers, len(layers) -i - 2, len(layers))
out.insert(0, layers[-1])
return out
DLA_CONFIGS = {
34: ([1, 1, 1, 2, 2, 1], [16, 32, 64, 128, 256, 512], BasicBlock),
60: ([1, 1, 1, 2, 3, 1], [16, 32, 128, 256, 512, 1024], Bottleneck)
}
class DLASeg(Backbone):
def __init__(self, num_layers, out_features, use_dla_up=True,
ms_output=False, norm='BN'):
super(DLASeg, self).__init__()
# depth = 34
levels, channels, Block = DLA_CONFIGS[num_layers]
self.base = DLA(num_layers=num_layers,
levels=levels, channels=channels, block=Block, norm=norm)
down_ratio = 4
self.first_level = int(np.log2(down_ratio))
self.ms_output = ms_output
self.last_level = 5 if not self.ms_output else 6
channels = self.base.channels
scales = [2 ** i for i in range(len(channels[self.first_level:]))]
self.use_dla_up = use_dla_up
if self.use_dla_up:
self.dla_up = DLAUp(
self.first_level, channels[self.first_level:], scales,
norm=norm)
out_channel = channels[self.first_level]
if not self.ms_output: # stride 4 DLA
self.ida_up = IDAUp(
out_channel, channels[self.first_level:self.last_level],
[2 ** i for i in range(self.last_level - self.first_level)],
norm=norm)
self._out_features = out_features
self._out_feature_channels = {
'dla{}'.format(i): channels[i] for i in range(6)}
self._out_feature_strides = {
'dla{}'.format(i): 2 ** i for i in range(6)}
self._size_divisibility = 32
@property
def size_divisibility(self):
return self._size_divisibility
def forward(self, x):
x = self.base(x)
if self.use_dla_up:
x = self.dla_up(x)
if not self.ms_output: # stride 4 dla
y = []
for i in range(self.last_level - self.first_level):
y.append(x[i].clone())
self.ida_up(y, 0, len(y))
ret = {}
for i in range(self.last_level - self.first_level):
out_feature = 'dla{}'.format(i)
if out_feature in self._out_features:
ret[out_feature] = y[i]
else:
ret = {}
st = self.first_level if self.use_dla_up else 0
for i in range(self.last_level - st):
out_feature = 'dla{}'.format(i + st)
if out_feature in self._out_features:
ret[out_feature] = x[i]
return ret
@BACKBONE_REGISTRY.register()
def build_dla_backbone(cfg, input_shape):
"""
Create a ResNet instance from config.
Returns:
ResNet: a :class:`ResNet` instance.
"""
return DLASeg(
out_features=cfg.MODEL.DLA.OUT_FEATURES,
num_layers=cfg.MODEL.DLA.NUM_LAYERS,
use_dla_up=cfg.MODEL.DLA.USE_DLA_UP,
ms_output=cfg.MODEL.DLA.MS_OUTPUT,
norm=cfg.MODEL.DLA.NORM)
class LastLevelP6P7(nn.Module):
"""
This module is used in RetinaNet to generate extra layers, P6 and P7 from
C5 feature.
"""
def __init__(self, in_channels, out_channels):
super().__init__()
self.num_levels = 2
self.in_feature = "dla5"
self.p6 = nn.Conv2d(in_channels, out_channels, 3, 2, 1)
self.p7 = nn.Conv2d(out_channels, out_channels, 3, 2, 1)
for module in [self.p6, self.p7]:
weight_init.c2_xavier_fill(module)
def forward(self, c5):
p6 = self.p6(c5)
p7 = self.p7(F.relu(p6))
return [p6, p7]
@BACKBONE_REGISTRY.register()
def build_retinanet_dla_fpn_backbone(cfg, input_shape: ShapeSpec):
"""
Args:
cfg: a detectron2 CfgNode
Returns:
backbone (Backbone): backbone module, must be a subclass of :class:`Backbone`.
"""
bottom_up = build_dla_backbone(cfg, input_shape)
in_features = cfg.MODEL.FPN.IN_FEATURES
out_channels = cfg.MODEL.FPN.OUT_CHANNELS
in_channels_p6p7 = bottom_up.output_shape()['dla5'].channels
backbone = FPN(
bottom_up=bottom_up,
in_features=in_features,
out_channels=out_channels,
norm=cfg.MODEL.FPN.NORM,
top_block=LastLevelP6P7(in_channels_p6p7, out_channels),
fuse_type=cfg.MODEL.FPN.FUSE_TYPE,
)
return backbone