File size: 5,343 Bytes
a76b665
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
"""
RAG Knowledge Assistant - Hugging Face Spaces Demo
Production-ready Retrieval-Augmented Generation system
"""

import gradio as gr
import os
import numpy as np
from pathlib import Path
from typing import List, Tuple, Dict
import time

# Mock classes for Hugging Face demo
class MockDocumentProcessor:
    def __init__(self, chunk_size=400, overlap=50):
        self.chunk_size = chunk_size
        self.overlap = overlap
    
    def process_text_file(self, file_path: str) -> List[Dict]:
        with open(file_path, 'r', encoding='utf-8') as f:
            text = f.read()
        
        chunks = []
        for i in range(0, len(text), self.chunk_size):
            chunk_text = text[i:i + self.chunk_size]
            if chunk_text.strip():
                chunks.append({
                    'text': chunk_text.strip(),
                    'chunk_id': f"chunk_{len(chunks)}",
                    'source': file_path,
                    'char_count': len(chunk_text)
                })
        return chunks

class MockRAGDemo:
    def __init__(self):
        self.document_processor = MockDocumentProcessor()
        self.chunks = []
        self.processed_docs = []
        print("πŸš€ RAG Demo initialized")
    
    def process_file(self, file):
        if file is None:
            return "❌ No file uploaded"
        
        try:
            chunks = self.document_processor.process_text_file(file.name)
            self.chunks.extend(chunks)
            
            file_name = Path(file.name).name
            self.processed_docs.append({
                'name': file_name,
                'chunks': len(chunks),
                'timestamp': time.strftime("%H:%M:%S")
            })
            
            return f"βœ… Processed {file_name}!\nπŸ“Š Created {len(chunks)} chunks\nπŸŽ‰ Total: {len(self.chunks)} chunks"
        except Exception as e:
            return f"❌ Error: {str(e)}"
    
    def chat(self, message: str, history: List[Tuple[str, str]]):
        if not message.strip():
            return "", history
        
        if not self.chunks:
            response = "⚠️ Upload a document first!"
            history.append((message, response))
            return "", history
        
        # Mock search and response
        relevant_chunks = self.chunks[:3]  # Mock: take first 3 chunks
        context = "\n".join([chunk['text'][:200] + "..." for chunk in relevant_chunks])
        
        response = f"""πŸ€– **Demo Response** (Mock AI for Hugging Face)

Based on your uploaded documents, here's what I found:

**Context:** {context}

**Mock Analysis:** This is a demonstration of the RAG system architecture. In the full version with OpenAI API:
- Real similarity search finds most relevant chunks
- GPT-4 generates contextual responses
- Source attribution with confidence scores

πŸ“š **Sources:** {', '.join([Path(c['source']).name for c in relevant_chunks])}

πŸ”— **Full Version:** [GitHub Repository](https://github.com/drbinna/rag-knowledge-assistant)"""
        
        history.append((message, response))
        return "", history

# Create demo
rag_demo = MockRAGDemo()

with gr.Blocks(title="RAG Knowledge Assistant", theme=gr.themes.Soft()) as demo:
    gr.HTML("""
    <div style="text-align: center; background: linear-gradient(90deg, #667eea 0%, #764ba2 100%); color: white; padding: 20px; border-radius: 10px; margin-bottom: 20px;">
        <h1>πŸ€– RAG Knowledge Assistant</h1>
        <p>Production-ready Retrieval-Augmented Generation system</p>
        <p><em>Real Similarity Search β€’ Smart Document Processing β€’ AI Integration</em></p>
    </div>
    """)
    
    with gr.Tabs():
        with gr.TabItem("πŸ’¬ Chat"):
            chatbot = gr.Chatbot(label="Conversation", height=400)
            with gr.Row():
                msg = gr.Textbox(label="Your Question", placeholder="Ask about your documents...", scale=4)
                send_btn = gr.Button("Send", variant="primary", scale=1)
        
        with gr.TabItem("πŸ“ Upload"):
            gr.Markdown("### Upload Text Documents")
            file_upload = gr.File(label="Choose TXT file", file_types=[".txt"])
            upload_btn = gr.Button("Process Document", variant="primary")
            upload_status = gr.Textbox(label="Status", lines=5, interactive=False)
        
        with gr.TabItem("ℹ️ About"):
            gr.Markdown("""
            ## RAG Knowledge Assistant
            
            **Production-ready Retrieval-Augmented Generation system**
            
            ### πŸ”§ Features
            - Real cosine similarity search with NumPy
            - Smart document chunking (400 chars + overlap)
            - OpenAI GPT-4 integration
            - Professional error handling
            
            ### πŸš€ Full Version
            **[GitHub Repository](https://github.com/drbinna/rag-knowledge-assistant)**
            - PDF support
            - Local deployment
            - Advanced configuration
            
            Built with Python, OpenAI, NumPy, and Gradio.
            """)
    
    # Event handlers
    msg.submit(rag_demo.chat, [msg, chatbot], [msg, chatbot])
    send_btn.click(rag_demo.chat, [msg, chatbot], [msg, chatbot])
    upload_btn.click(rag_demo.process_file, file_upload, upload_status)

if __name__ == "__main__":
    demo.launch()