File size: 2,578 Bytes
98889c8
 
 
 
 
 
 
58eaf7f
75ebedf
 
98889c8
e87f39a
98889c8
 
75ebedf
98889c8
 
75ebedf
98889c8
 
 
75ebedf
98889c8
 
58eaf7f
98889c8
 
 
 
58eaf7f
8ddec5a
 
 
 
 
 
 
 
 
 
 
98889c8
 
58eaf7f
 
e87f39a
98889c8
58eaf7f
 
e87f39a
 
 
 
58eaf7f
 
e87f39a
98889c8
58eaf7f
 
75ebedf
 
 
98889c8
58eaf7f
75ebedf
58eaf7f
75ebedf
 
58eaf7f
98889c8
58eaf7f
98889c8
 
e87f39a
 
58eaf7f
 
 
 
 
98889c8
 
 
58eaf7f
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
import gradio as gr
import torch
import numpy as np
from diffusers import StableDiffusionXLImg2ImgPipeline
from transformers import DPTFeatureExtractor, DPTForDepthEstimation
from PIL import Image, ImageEnhance, ImageOps

# Configuração de dispositivo
device = "cpu"  # or "cuda" if you have a GPU
torch_dtype = torch.float32

print("Carregando modelo SDXL Img2Img...")
pipe = StableDiffusionXLImg2ImgPipeline.from_pretrained(
    "stabilityai/stable-diffusion-xl-base-1.0",
    torch_dtype=torch_dtype
).to(device)

print("Carregando pesos LoRA weights with PEFT...")
pipe.load_lora_weights(
    "KappaNeuro/bas-relief",
    weight_name="BAS-RELIEF.safetensors",
    peft_backend="peft"
)

print("Carregando modelo de profundidade...")
feature_extractor = DPTFeatureExtractor.from_pretrained("Intel/dpt-large")
depth_model = DPTForDepthEstimation.from_pretrained("Intel/dpt-large").to(device)


def processar_profundidade(depth_arr: np.ndarray) -> Image.Image:
    d_min, d_max = depth_arr.min(), depth_arr.max()
    depth_stretched = (depth_arr - d_min) / (d_max - d_min + 1e-8)
    depth_stretched = (depth_stretched * 255).astype(np.uint8)

    depth_pil = Image.fromarray(depth_stretched)
    depth_pil = ImageOps.autocontrast(depth_pil)

    enhancer = ImageEnhance.Sharpness(depth_pil)
    depth_pil = enhancer.enhance(2.0)

    return depth_pil


def processar_imagem(imagem: Image.Image):
    # Pré-processamento
    imagem = imagem.convert("RGB").resize((512, 512))

    # Gerar baixo-relevo
    with torch.inference_mode():
        resultado = pipe(
            prompt="BAS-RELIEF",
            image=imagem,
            strength=0.7,
            num_inference_steps=20,
            guidance_scale=7.5
        )

    # Calcular profundidade
    inputs = feature_extractor(resultado.images[0], return_tensors="pt").to(device)
    with (torch.no_grad()):
        outputs  = depth_model(**inputs)
        predicted_depth = outputs.predicted_depth

    depth_map = torch.nn.functional.interpolate(
        predicted_depth.unsqueeze(1),
        size=imagem.size[::-1],
        mode="bicubic",
        align_corners=False
    ).squeeze().cpu().numpy()

    return resultado.images[0], processar_profundidade(depth_map)


# Interface Gradio
interface = gr.Interface(
    fn=processar_imagem,
    inputs=gr.Image(type="pil"),
    outputs=[gr.Image(label="Resultado"), gr.Image(label="Profundidade")],
    title="Conversor para Baixo-relevo",
    description="Transforme imagens em baixo-relevo com mapa de profundidade"
)

if __name__ == "__main__":
    interface.launch()