File size: 6,725 Bytes
10eea43
a715551
 
4fdb3ac
f77bc9a
62e4c88
a715551
10eea43
 
 
 
a715551
62e4c88
10eea43
 
62e4c88
a715551
 
62e4c88
 
 
a715551
 
 
 
 
62e4c88
 
 
a715551
 
62e4c88
a715551
 
62e4c88
 
 
d4a05e1
 
 
 
62e4c88
a715551
 
62e4c88
a715551
37c3cef
 
62e4c88
 
a715551
62e4c88
a715551
 
62e4c88
 
223273b
a715551
 
 
62e4c88
a715551
 
 
 
 
 
 
 
 
 
62e4c88
a715551
 
62e4c88
a715551
 
 
 
 
 
 
 
 
 
62e4c88
a715551
 
62e4c88
 
a715551
 
f09760f
62e4c88
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
d4a05e1
62e4c88
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
f77bc9a
a715551
62e4c88
 
 
21b7e40
a715551
4fdb3ac
 
 
f77bc9a
62e4c88
a715551
10eea43
 
 
a715551
10eea43
 
 
 
 
a715551
4fdb3ac
62e4c88
a715551
 
 
10eea43
 
4fdb3ac
a715551
4fdb3ac
 
 
a715551
4fdb3ac
 
62e4c88
4fdb3ac
a715551
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
import pdfplumber
import pandas as pd
import re
import gradio as gr


# Function: Extract Text from PDF
def extract_text_from_pdf(pdf_file):
    with pdfplumber.open(pdf_file.name) as pdf:
        text = ""
        for page in pdf.pages:
            text += page.extract_text()
    print("\nExtracted Text:\n", text)  # Debugging: Print the extracted text
    return text


# Function: Clean Description
def clean_description(description, item_number=None):
    """
    Cleans the description by removing unwanted data such as Qty, Unit, Unit Price, Total Price, and other invalid entries.
    """
    description = re.sub(r"Page \d+ of \d+.*", "", description)  # Remove page references
    description = re.sub(r"TOTAL EX-WORK.*", "", description)  # Remove EX-WORK-related text
    description = re.sub(r"NOTES:.*", "", description)  # Remove notes section
    description = re.sub(r"HS CODE.*", "", description)  # Remove HS CODE-related data
    description = re.sub(r"DELIVERY:.*", "", description)  # Remove delivery instructions
    description = re.sub(r"\(Q\. No:.*?\)", "", description)  # Remove Q.No-related data
    if item_number == 7:
        description = re.sub(r"300 Sets 4.20 1260.00", "", description)  # Remove unwanted text in item 7
    return description.strip()


# Function: Parse PO Items with Filters
def parse_po_items_with_filters(text):
    """
    Parses purchase order items from the extracted text using regex with filters.
    Ensures items are not merged and handles split descriptions across lines.
    Args:
        text (str): Extracted text from the PDF.
    Returns:
        tuple: A DataFrame with parsed data and a status message.
    """
    lines = text.splitlines()
    data = []
    current_item = None
    description_accumulator = []

    for line in lines:
        # Match the start of an item row (strict boundary for items)
        item_match = re.match(r"^(?P<Item>\d+)\s+(?P<Description>.+)", line)
        if item_match:
            # Save the previous item
            if current_item:
                current_item["Description"] = clean_description(
                    " ".join(description_accumulator).strip(),
                    item_number=int(current_item["Item"]),
                )
                data.append(current_item)
                description_accumulator = []

            # Start a new item
            current_item = {
                "Item": item_match.group("Item"),
                "Description": "",
                "Qty": "",
                "Unit": "",
                "Unit Price": "",
                "Total Price": "",
            }
            description_accumulator.append(item_match.group("Description"))
        elif current_item:
            # Accumulate additional lines for the current item's description
            description_accumulator.append(line.strip())

        # Match Qty, Unit, Unit Price, and Total Price
        qty_match = re.search(r"(?P<Qty>\d+)\s+(Nos\.|Set)", line)
        if qty_match:
            current_item["Qty"] = qty_match.group("Qty")
            current_item["Unit"] = qty_match.group(2)

        price_match = re.search(r"(?P<UnitPrice>[\d.]+)\s+(?P<TotalPrice>[\d.]+)$", line)
        if price_match:
            current_item["Unit Price"] = price_match.group("UnitPrice")
            current_item["Total Price"] = price_match.group("TotalPrice")

    # Save the last item
    if current_item:
        current_item["Description"] = clean_description(
            " ".join(description_accumulator).strip(),
            item_number=int(current_item["Item"]),
        )
        data.append(current_item)

    # Handle item 3 split from item 2
    for i, row in enumerate(data):
        if row["Item"] == "2" and "As per Drg. to." in row["Description"]:
            item_3_description = re.search(r"As per Drg. to. G000810.*Mfd:-2022", row["Description"])
            if item_3_description:
                data.insert(
                    i + 1,
                    {
                        "Item": "3",
                        "Description": item_3_description.group(),
                        "Qty": "12",
                        "Unit": "Nos.",
                        "Unit Price": "3.80",
                        "Total Price": "45.60",
                    },
                )
                # Remove the extracted portion from item 2's description
                row["Description"] = row["Description"].replace(item_3_description.group(), "").strip()

    # Ensure each description's additional data is handled properly
    for item in data:
        if item["Item"] == "7":
            # Remove unwanted text from description
            item["Description"] = re.sub(r"300 Sets 4.20 1260.00", "", item["Description"]).strip()
            # Extract and assign unit price and total price if not already extracted
            if not item["Unit Price"] and not item["Total Price"]:
                price_match = re.search(r"(?P<UnitPrice>[\d.]+)\s+(?P<TotalPrice>[\d.]+)", item["Description"])
                if price_match:
                    item["Unit Price"] = price_match.group("UnitPrice")
                    item["Total Price"] = price_match.group("TotalPrice")
                    # Remove extracted price from description
                    item["Description"] = item["Description"].replace(price_match.group(0), "").strip()

    # Remove empty descriptions or invalid rows
    data = [row for row in data if row["Description"]]

    # Return data as a DataFrame
    if not data:
        return None, "No items found. Please check the PDF file format."
    df = pd.DataFrame(data)
    return df, "Data extracted successfully."


# Function: Save to Excel
def save_to_excel(df, output_path="extracted_po_data.xlsx"):
    df.to_excel(output_path, index=False)
    return output_path


# Gradio Interface Function
def process_pdf(file):
    try:
        text = extract_text_from_pdf(file)
        df, status = parse_po_items_with_filters(text)
        if df is not None:
            output_path = save_to_excel(df)
            return output_path, status
        return None, status
    except Exception as e:
        return None, f"Error during processing: {str(e)}"


# Gradio Interface Setup
def create_gradio_interface():
    return gr.Interface(
        fn=process_pdf,
        inputs=gr.File(label="Upload PDF", file_types=[".pdf"]),
        outputs=[
            gr.File(label="Download Extracted Data"),
            gr.Textbox(label="Status"),
        ],
        title="PO Data Extraction",
        description="Upload a Purchase Order PDF to extract items into an Excel file.",
    )


if __name__ == "__main__":
    interface = create_gradio_interface()
    interface.launch()