File size: 5,692 Bytes
10eea43 a715551 4fdb3ac f77bc9a a715551 10eea43 bbdc667 704df50 bbdc667 10eea43 704df50 10eea43 a715551 62e4c88 704df50 62e4c88 704df50 a715551 704df50 62e4c88 704df50 a715551 704df50 62e4c88 704df50 a715551 62e4c88 704df50 62e4c88 a715551 62e4c88 a715551 37c3cef bbdc667 62e4c88 a715551 62e4c88 a715551 62e4c88 223273b a715551 62e4c88 a715551 62e4c88 a715551 62e4c88 a715551 fdc0157 a715551 fdc0157 a715551 62e4c88 a715551 f09760f 704df50 62e4c88 f77bc9a a715551 62e4c88 a715551 4fdb3ac 704df50 4fdb3ac f77bc9a a715551 10eea43 bbdc667 704df50 bbdc667 10eea43 a715551 10eea43 a715551 4fdb3ac a715551 704df50 a715551 10eea43 704df50 4fdb3ac a715551 4fdb3ac a715551 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 |
import pdfplumber
import pandas as pd
import re
import gradio as gr
# Function: Extract Text from PDF
def extract_text_from_pdf(pdf_file):
"""
Extracts raw text from a PDF file.
"""
with pdfplumber.open(pdf_file.name) as pdf:
text = ""
for page in pdf.pages:
text += page.extract_text()
return text
# Function: Clean Description
def clean_description(description, item_number=None):
"""
Cleans the description by removing unwanted patterns dynamically.
"""
# General unwanted patterns
description = re.sub(r"Page \d+ of \d+.*", "", description) # Remove page references
description = re.sub(r"TOTAL EX-WORK.*", "", description) # Remove EX-WORK-related text
description = re.sub(r"NOTES:.*", "", description) # Remove notes section
description = re.sub(r"HS CODE.*", "", description) # Remove HS CODE-related data
description = re.sub(r"DELIVERY:.*", "", description) # Remove delivery instructions
# Remove redundant quantity/price in descriptions
description = re.sub(r"\d+\s+(Nos\.|Set)\s+[\d.]+\s+[\d.]+", "", description)
# Specific fix for Item 7
if item_number == 7:
description = re.sub(r"300 Sets 4.20 1260.00", "", description)
return description.strip()
# Function: Parse PO Items with Filters
def parse_po_items_with_filters(text):
"""
Parses purchase order items from the extracted text systematically.
"""
lines = text.splitlines()
data = []
current_item = None
description_accumulator = []
for line in lines:
print(f"Processing Line: {line}") # Debugging
# Match the start of a new item
item_match = re.match(r"^(?P<Item>\d+)\s+(?P<Description>.+)", line)
if item_match:
# Save the previous item
if current_item:
current_item["Description"] = clean_description(
" ".join(description_accumulator).strip(),
item_number=int(current_item["Item"]),
)
data.append(current_item)
description_accumulator = []
# Start a new item
current_item = {
"Item": item_match.group("Item"),
"Description": "",
"Qty": "",
"Unit": "",
"Unit Price": "",
"Total Price": "",
}
description_accumulator.append(item_match.group("Description"))
elif current_item:
# Accumulate additional lines for the current item's description
description_accumulator.append(line.strip())
# Match Qty, Unit, Unit Price, and Total Price
qty_match = re.search(r"(?P<Qty>\d+)\s+(Nos\.|Set)", line)
if qty_match:
current_item["Qty"] = qty_match.group("Qty")
current_item["Unit"] = qty_match.group(2)
# Skip extracting unit price and total price for specific items
if not re.search(r"(Mfd:-2022|\(NT00192\)|SIZE)", line):
price_match = re.search(r"(?P<UnitPrice>[\d.]+)\s+(?P<TotalPrice>[\d.]+)$", line)
if price_match:
current_item["Unit Price"] = price_match.group("UnitPrice")
current_item["Total Price"] = price_match.group("TotalPrice")
# End of Description: Start new item when description ends with specific pattern
if re.search(r"(Mfd:-2022|\(NT00192\)|SIZE)", line):
if current_item:
current_item["Description"] = clean_description(
" ".join(description_accumulator).strip(),
item_number=int(current_item["Item"]),
)
data.append(current_item)
description_accumulator = []
current_item = None # Reset for the next item
# Save the last item if not already added
if current_item:
current_item["Description"] = clean_description(
" ".join(description_accumulator).strip(),
item_number=int(current_item["Item"]),
)
data.append(current_item)
# Remove invalid rows
data = [row for row in data if row["Description"]]
# Return data as a DataFrame
if not data:
return None, "No items found. Please check the PDF file format."
df = pd.DataFrame(data)
return df, "Data extracted successfully."
# Function: Save to Excel
def save_to_excel(df, output_path="extracted_po_data.xlsx"):
"""
Saves the extracted data to an Excel file.
"""
df.to_excel(output_path, index=False)
return output_path
# Gradio Interface Function
def process_pdf(file):
"""
Processes the uploaded PDF file and returns extracted data and status.
"""
try:
text = extract_text_from_pdf(file)
df, status = parse_po_items_with_filters(text)
if df is not None:
output_path = save_to_excel(df)
return output_path, status
return None, status
except Exception as e:
return None, f"Error during processing: {str(e)}"
# Gradio Interface Setup
def create_gradio_interface():
"""
Creates a Gradio interface for PO data extraction.
"""
return gr.Interface(
fn=process_pdf,
inputs=gr.File(label="Upload PDF", file_types=[".pdf"]),
outputs=[
gr.File(label="Download Extracted Data"),
gr.Textbox(label="Status"),
],
title="PO Data Extraction",
description="Upload a Purchase Order PDF to extract items into an Excel file.",
)
if __name__ == "__main__":
interface = create_gradio_interface()
interface.launch()
|