File size: 10,069 Bytes
41c03cf c3429f6 462fddf c3429f6 462fddf ba9faee c3429f6 7e29aa0 c3429f6 58199b3 1213ff3 7e44cd3 1213ff3 885c61f c3429f6 462fddf 7e44cd3 42d2b87 462fddf db7efde 462fddf 7e29aa0 58199b3 42d2b87 a653421 58199b3 db7efde 7e29aa0 db7efde 42d2b87 c3429f6 462fddf db7efde 462fddf db7efde c9d4715 7e44cd3 0a9dc78 1213ff3 462fddf db7efde 58199b3 1213ff3 58199b3 462fddf 1213ff3 7e44cd3 db7efde 1213ff3 d41a272 1213ff3 d41a272 885c61f 1213ff3 58199b3 1213ff3 58199b3 1213ff3 58199b3 1213ff3 0a9dc78 885c61f 58199b3 c3429f6 462fddf db7efde 462fddf 1213ff3 58199b3 1213ff3 0a9dc78 1213ff3 0a9dc78 1213ff3 0a9dc78 1213ff3 db7efde 0a9dc78 1213ff3 0a9dc78 1213ff3 0a9dc78 1213ff3 0a9dc78 1213ff3 0a9dc78 1213ff3 0a9dc78 1213ff3 0a9dc78 1213ff3 462fddf 1213ff3 462fddf 1213ff3 885c61f c9d4715 1213ff3 7e44cd3 1213ff3 d41a272 7e44cd3 885c61f 1213ff3 7e44cd3 1213ff3 c9d4715 1213ff3 462fddf d41a272 1213ff3 462fddf d41a272 7e29aa0 a653421 689fb64 c9d4715 462fddf 7e44cd3 462fddf 1213ff3 c9d4715 462fddf 1213ff3 c9d4715 1213ff3 61be320 462fddf 1213ff3 885c61f 462fddf 885c61f 462fddf a295d73 c3429f6 1213ff3 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 |
import cv2
import numpy as np
import torch
from ultralytics import YOLO
import gradio as gr
from scipy.interpolate import interp1d
import uuid
import os
# Load the trained YOLOv8n model
model = YOLO("best.pt")
# Constants for LBW decision and video processing
STUMPS_WIDTH = 0.2286 # meters (width of stumps)
BALL_DIAMETER = 0.073 # meters (approx. cricket ball diameter)
FRAME_RATE = 20 # Input video frame rate
SLOW_MOTION_FACTOR = 3 # Adjusted for 20 FPS
CONF_THRESHOLD = 0.25 # Confidence threshold for detection
IMPACT_ZONE_Y = 0.85 # Fraction of frame height for impact zone
PITCH_ZONE_Y = 0.75 # Fraction of frame height for pitch zone
IMPACT_DELTA_Y = 50 # Pixels for detecting sudden y-position change
STUMPS_HEIGHT = 0.711 # meters (height of stumps)
def process_video(video_path):
if not os.path.exists(video_path):
return [], [], [], "Error: Video file not found"
cap = cv2.VideoCapture(video_path)
frames = []
ball_positions = []
detection_frames = [] # Track frames with exactly one detection
debug_log = []
frame_count = 0
while cap.isOpened():
ret, frame = cap.read()
if not ret:
break
frame_count += 1
frames.append(frame.copy())
results = model.predict(frame, conf=CONF_THRESHOLD)
detections = [det for det in results[0].boxes if det.cls == 0] # Class 0 is cricketBall
if len(detections) == 1: # Only consider frames with exactly one detection
x1, y1, x2, y2 = detections[0].xyxy[0].cpu().numpy()
ball_positions.append([(x1 + x2) / 2, (y1 + y2) / 2])
detection_frames.append(frame_count - 1) # 0-based index
cv2.rectangle(frame, (int(x1), int(y1)), (int(x2), int(y2)), (0, 255, 0), 2)
frames[-1] = frame
debug_log.append(f"Frame {frame_count}: {len(detections)} ball detections")
cap.release()
if not ball_positions:
debug_log.append("No valid single-ball detections in any frame")
else:
debug_log.append(f"Total valid single-ball detections: {len(ball_positions)}")
return frames, ball_positions, detection_frames, "\n".join(debug_log)
def estimate_trajectory(ball_positions, detection_frames, frames):
if len(ball_positions) < 2:
return None, None, None, None, None, None, "Error: Fewer than 2 valid single-ball detections for trajectory"
frame_height = frames[0].shape[0]
# Extract x, y coordinates
x_coords = [pos[0] for pos in ball_positions]
y_coords = [pos[1] for pos in ball_positions]
times = np.array(detection_frames) / FRAME_RATE
# Pitch point: first valid detection or when y exceeds PITCH_ZONE_Y
pitch_idx = 0
for i, y in enumerate(y_coords):
if y > frame_height * PITCH_ZONE_Y:
pitch_idx = i
break
pitch_point = ball_positions[pitch_idx]
pitch_frame = detection_frames[pitch_idx]
# Impact point: sudden y-change or y exceeds IMPACT_ZONE_Y
impact_idx = None
for i in range(1, len(y_coords)):
if (y_coords[i] > frame_height * IMPACT_ZONE_Y or
abs(y_coords[i] - y_coords[i-1]) > IMPACT_DELTA_Y):
impact_idx = i
break
if impact_idx is None:
impact_idx = len(ball_positions) - 1
impact_point = ball_positions[impact_idx]
impact_frame = detection_frames[impact_idx]
# Use only detected positions for trajectory
x_coords = x_coords[:impact_idx + 1]
y_coords = y_coords[:impact_idx + 1]
times = times[:impact_idx + 1]
try:
fx = interp1d(times, x_coords, kind='linear', fill_value="extrapolate")
fy = interp1d(times, y_coords, kind='quadratic', fill_value="extrapolate")
except Exception as e:
return None, None, None, None, None, None, f"Error in trajectory interpolation: {str(e)}"
# Trajectory for visualization (detected frames only)
vis_trajectory = list(zip(x_coords, y_coords))
# Full trajectory for LBW (includes projection)
t_full = np.linspace(times[0], times[-1] + 0.5, len(times) + 10)
x_full = fx(t_full)
y_full = fy(t_full)
full_trajectory = list(zip(x_full, y_full))
debug_log = (f"Trajectory estimated successfully\n"
f"Pitch point at frame {pitch_frame + 1}: ({pitch_point[0]:.1f}, {pitch_point[1]:.1f})\n"
f"Impact point at frame {impact_frame + 1}: ({impact_point[0]:.1f}, {impact_point[1]:.1f})")
return full_trajectory, vis_trajectory, pitch_point, pitch_frame, impact_point, impact_frame, debug_log
def lbw_decision(ball_positions, full_trajectory, frames, pitch_point, impact_point):
if not frames:
return "Error: No frames processed", None, None, None
if not full_trajectory or len(ball_positions) < 2:
return "Not enough data (insufficient valid single-ball detections)", None, None, None
frame_height, frame_width = frames[0].shape[:2]
stumps_x = frame_width / 2
stumps_y = frame_height * 0.9
stumps_width_pixels = frame_width * (STUMPS_WIDTH / 3.0)
pitch_x, pitch_y = pitch_point
impact_x, impact_y = impact_point
# Check pitching point
if pitch_x < stumps_x - stumps_width_pixels / 2 or pitch_x > stumps_x + stumps_width_pixels / 2:
return f"Not Out (Pitched outside line at x: {pitch_x:.1f}, y: {pitch_y:.1f})", full_trajectory, pitch_point, impact_point
# Check impact point
if impact_x < stumps_x - stumps_width_pixels / 2 or impact_x > stumps_x + stumps_width_pixels / 2:
return f"Not Out (Impact outside line at x: {impact_x:.1f}, y: {impact_y:.1f})", full_trajectory, pitch_point, impact_point
# Check trajectory hitting stumps
for x, y in full_trajectory:
if abs(x - stumps_x) < stumps_width_pixels / 2 and abs(y - stumps_y) < frame_height * 0.1:
return f"Out (Ball hits stumps, Pitch at x: {pitch_x:.1f}, y: {pitch_y:.1f}, Impact at x: {impact_x:.1f}, y: {impact_y:.1f})", full_trajectory, pitch_point, impact_point
return f"Not Out (Missing stumps, Pitch at x: {pitch_x:.1f}, y: {pitch_y:.1f}, Impact at x: {impact_x:.1f}, y: {impact_y:.1f})", full_trajectory, pitch_point, impact_point
def generate_slow_motion(frames, vis_trajectory, pitch_point, pitch_frame, impact_point, impact_frame, detection_frames, output_path):
if not frames:
return None
frame_height, frame_width = frames[0].shape[:2]
stumps_x = frame_width / 2
stumps_y = frame_height * 0.9
stumps_width_pixels = frame_width * (STUMPS_WIDTH / 3.0)
stumps_height_pixels = frame_height * (STUMPS_HEIGHT / 3.0)
fourcc = cv2.VideoWriter_fourcc(*'mp4v')
out = cv2.VideoWriter(output_path, fourcc, FRAME_RATE / SLOW_MOTION_FACTOR, (frame_width, frame_height))
# Prepare trajectory points for visualization
trajectory_points = np.array(vis_trajectory, dtype=np.int32).reshape((-1, 1, 2))
for i, frame in enumerate(frames):
# Draw stumps (three white vertical lines)
stump_positions = [
(stumps_x - stumps_width_pixels / 2, stumps_y), # Left stump
(stumps_x, stumps_y), # Middle stump
(stumps_x + stumps_width_pixels / 2, stumps_y) # Right stump
]
for x, y in stump_positions:
cv2.line(frame, (int(x), int(y)), (int(x), int(y - stumps_height_pixels)), (255, 255, 255), 2)
# Draw trajectory (blue line) only for detected frames
if i in detection_frames and trajectory_points.size > 0:
idx = detection_frames.index(i) + 1
if idx <= len(trajectory_points):
cv2.polylines(frame, [trajectory_points[:idx]], False, (255, 0, 0), 2)
# Draw pitch point (red circle) only in pitch frame
if pitch_point and i == pitch_frame:
x, y = pitch_point
cv2.circle(frame, (int(x), int(y)), 8, (0, 0, 255), -1)
cv2.putText(frame, "Pitch Point", (int(x) + 10, int(y) - 10),
cv2.FONT_HERSHEY_SIMPLEX, 0.6, (0, 0, 255), 2)
# Draw impact point (yellow circle) only in impact frame
if impact_point and i == impact_frame:
x, y = impact_point
cv2.circle(frame, (int(x), int(y)), 8, (0, 255, 255), -1)
cv2.putText(frame, "Impact Point", (int(x) + 10, int(y) + 20),
cv2.FONT_HERSHEY_SIMPLEX, 0.6, (0, 255, 255), 2)
for _ in range(SLOW_MOTION_FACTOR):
out.write(frame)
out.release()
return output_path
def drs_review(video):
frames, ball_positions, detection_frames, debug_log = process_video(video)
if not frames:
return f"Error: Failed to process video\nDebug Log:\n{debug_log}", None
full_trajectory, vis_trajectory, pitch_point, pitch_frame, impact_point, impact_frame, trajectory_log = estimate_trajectory(ball_positions, detection_frames, frames)
decision, full_trajectory, pitch_point, impact_point = lbw_decision(ball_positions, full_trajectory, frames, pitch_point, impact_point)
output_path = f"output_{uuid.uuid4()}.mp4"
slow_motion_path = generate_slow_motion(frames, vis_trajectory, pitch_point, pitch_frame, impact_point, impact_frame, detection_frames, output_path)
debug_output = f"{debug_log}\n{trajectory_log}"
return f"DRS Decision: {decision}\nDebug Log:\n{debug_output}", slow_motion_path
# Gradio interface
iface = gr.Interface(
fn=drs_review,
inputs=gr.Video(label="Upload Video Clip"),
outputs=[
gr.Textbox(label="DRS Decision and Debug Log"),
gr.Video(label="Very Slow-Motion Replay with Ball Detection (Green), Trajectory (Blue Line), Pitch Point (Red), Impact Point (Yellow), Stumps (White)")
],
title="AI-Powered DRS for LBW in Local Cricket",
description="Upload a video clip of a cricket delivery to get an LBW decision and slow-motion replay showing ball detection (green boxes), trajectory (blue line), pitch point (red circle), impact point (yellow circle), and stumps (white lines)."
)
if __name__ == "__main__":
iface.launch() |