Kushalmanda's picture
Update app.py
970cc25 verified
raw
history blame
3.67 kB
import torch
import gradio as gr
from PIL import Image
from pdf2image import convert_from_path
import numpy as np
from transformers import AutoFeatureExtractor, AutoModelForObjectDetection
# Load the pre-trained DETR model and feature extractor
model = AutoModelForObjectDetection.from_pretrained("facebook/detr-resnet-50")
extractor = AutoFeatureExtractor.from_pretrained("facebook/detr-resnet-50")
# Simplified COCO label mapping (DETR uses COCO dataset)
COCO_LABELS = {56: "wall", 60: "foundation"} # Pretending chair (56) is "wall", dining table (60) is "foundation"
# Function to calculate materials based on detected areas
def calculate_materials(detected_objects, image_width, image_height):
materials = {
"cement": 0,
"bricks": 0,
"steel": 0
}
for obj in detected_objects:
x1, y1, x2, y2 = obj['bbox']
width = (x2 - x1) * image_width # Simplified scaling
height = (y2 - y1) * image_height # Simplified scaling
area = width * height # cm² (assuming a scale)
print(f"Detected {obj['name']} with area {area:.2f} cm²")
if obj['name'] == 'wall':
materials['cement'] += area * 0.1 # kg
materials['bricks'] += area * 10 # units
materials['steel'] += area * 0.05 # kg
elif obj['name'] == 'foundation':
materials['cement'] += area * 0.2
materials['bricks'] += area * 15
materials['steel'] += area * 0.1
return materials
# Function to process PDFs and convert to images
def pdf_to_image(pdf_file):
images = convert_from_path(pdf_file, first_page=1, last_page=1) # Convert the first page of the PDF
return images[0] # Return the first page as an image
# Define the function for image inference
def predict_image(file):
# Check if the input file is a PDF or image
if isinstance(file, str) and file.endswith('.pdf'):
image = pdf_to_image(file) # Convert PDF to image
else:
image = Image.open(file) # Open the image file
# Convert the image to the correct format for the model
inputs = extractor(images=image, return_tensors="pt")
# Run inference with DETR
outputs = model(**inputs)
# Post-process the outputs
target_sizes = torch.tensor([image.size[::-1]]) # height, width
results = extractor.post_process_object_detection(outputs, target_sizes=target_sizes, threshold=0.5)[0]
detected_objects = []
for score, label, box in zip(results["scores"], results["labels"], results["boxes"]):
box = box.tolist()
label_id = label.item()
label_name = COCO_LABELS.get(label_id, "unknown")
if label_name != "unknown": # Only process relevant objects
detected_objects.append({
'name': label_name,
'bbox': box
})
# Calculate materials
image_width, image_height = image.size
materials = calculate_materials(detected_objects, image_width, image_height)
# Format the output for better readability
formatted_materials = {
"cement": f"{materials['cement']:.2f} kg",
"bricks": f"{materials['bricks']:.0f} units",
"steel": f"{materials['steel']:.2f} kg"
}
return formatted_materials
# Set up Gradio interface
interface = gr.Interface(
fn=predict_image,
inputs=gr.File(label="Upload Blueprint (PDF or Image)"),
outputs=gr.JSON(label="Material Estimates"),
title="Blueprint Material Estimator",
description="Upload a blueprint image or PDF to estimate construction materials."
)
# Launch the interface
if __name__ == "__main__":
interface.launch(share=False)