Spaces:
Runtime error
Runtime error
File size: 1,071 Bytes
2086a2f 8f56da4 2086a2f e79685f 2086a2f 8f56da4 2086a2f 8f56da4 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 |
from transformers import pipeline
import gradio as gr
classifier = pipeline("text-classification", model="nlptown/bert-base-multilingual-uncased-sentiment")
def match_profile(resume_text, linkedin_text):
try:
# Combine input safely and truncate
input_text = (resume_text + " " + linkedin_text)[:1000] # Trim to 1000 chars
result = classifier(input_text)
label = result[0]['label']
score = result[0]['score'] * 100
return f"Predicted Label: {label}\nSuitability Score: {score:.2f}"
except Exception as e:
return f"❌ Error: {str(e)}"
interface = gr.Interface(
fn=match_profile,
inputs=[
gr.Textbox(lines=10, placeholder="Paste Resume Text here...", label="Resume Text"),
gr.Textbox(lines=5, placeholder="Paste LinkedIn Profile Summary here...", label="LinkedIn Text")
],
outputs="text",
title="LIC Profile Matcher",
description="This tool matches an agent’s resume and LinkedIn profile using a BERT model and returns a suitability score."
)
interface.launch()
|