Spaces:
Sleeping
Sleeping
import os | |
import gradio as gr | |
import requests | |
import inspect | |
import pandas as pd | |
import smolagents | |
from smolagents import DuckDuckGoSearchTool, VisitWebpageTool | |
import time # Added: For sleep functionality | |
from functools import lru_cache # Added: For caching search results | |
from youtube_transcript_api import YouTubeTranscriptApi | |
import re | |
class YouTubeVideoTool: | |
def __init__(self): | |
self.name = "youtube_video_tool" | |
def __call__(self, query): | |
""" | |
Extract information from a YouTube video. | |
Args: | |
query: Either a YouTube URL or video ID | |
Returns: | |
String with the transcript of the video | |
""" | |
try: | |
# Extract video ID from URL if needed | |
video_id = self._extract_video_id(query) | |
if not video_id: | |
return "Could not extract a valid YouTube video ID" | |
# Get the transcript | |
transcript_list = YouTubeTranscriptApi.get_transcript(video_id) | |
# Combine the transcript text | |
transcript_text = " ".join([item['text'] for item in transcript_list]) | |
return f"Transcript from YouTube video {video_id}:\n{transcript_text}" | |
except Exception as e: | |
return f"Error processing YouTube video: {str(e)}" | |
def _extract_video_id(self, url_or_id): | |
"""Extract YouTube video ID from various URL formats or return the ID if already provided.""" | |
# Handle direct video ID | |
if len(url_or_id) == 11 and re.match(r'^[A-Za-z0-9_-]{11}$', url_or_id): | |
return url_or_id | |
# Common YouTube URL patterns | |
patterns = [ | |
r'(?:youtube\.com\/watch\?v=|youtu\.be\/|youtube\.com\/embed\/|youtube\.com\/v\/)([A-Za-z0-9_-]{11})', | |
r'youtube\.com\/watch\?.*v=([A-Za-z0-9_-]{11})', | |
r'youtube\.com\/shorts\/([A-Za-z0-9_-]{11})' | |
] | |
for pattern in patterns: | |
match = re.search(pattern, url_or_id) | |
if match: | |
return match.group(1) | |
return None | |
# TOOLS | |
search_tool = DuckDuckGoSearchTool() | |
visit_webpage = VisitWebpageTool() | |
youtube_tool = YouTubeVideoTool() | |
# (Keep Constants as is) | |
# --- Constants --- | |
DEFAULT_API_URL = "https://agents-course-unit4-scoring.hf.space" | |
# Cache Wrapper | |
def cached_search(query): | |
return search_tool(query) | |
# --- Basic Agent Definition --- | |
# ----- THIS IS WERE YOU CAN BUILD WHAT YOU WANT ------ | |
class BasicAgent: | |
def __init__(self, model=None, tools=None): | |
self.model = model | |
self.tools = tools if tools is not None else [] | |
self.history = [] | |
print(f"BasicAgent initialized with model: {model} and {len(self.tools)} tools.") | |
def __call__(self, question: str) -> str: | |
print(f"Agent received question (first 50 chars): {question[:50]}...") | |
# Implement your agent logic here using self.model and self.tools | |
final_answer = self.process_question(question) | |
print(f"Agent returning answer: {final_answer[:50]}...") | |
return final_answer | |
def process_question(self, question:str) -> str: | |
try: | |
# Check if this is a request about a YouTube video | |
youtube_patterns = ["youtube.com", "youtu.be", "watch youtube", "youtube video"] | |
use_youtube_tool = any(pattern in question.lower() for pattern in youtube_patterns) | |
if use_youtube_tool and any(isinstance(tool, YouTubeVideoTool) for tool in self.tools): | |
# Extract potential YouTube URL or ID | |
url_match = re.search(r'(?:https?:\/\/)?(?:www\.)?(?:youtube\.com|youtu\.be)\/[^\s]+', question) | |
youtube_url = url_match.group(0) if url_match else question | |
# Use YouTube tool | |
youtube_info = next(tool for tool in self.tools | |
if isinstance(tool, YouTubeVideoTool))(youtube_url) | |
relevant_info = self._extract_key_info(youtube_info, question) | |
return self._formulate_direct_answer(relevant_info, question) | |
else: | |
# Use regular search | |
search_results = cached_search(question) if any(isinstance(tool, DuckDuckGoSearchTool) for tool in self.tools) else "No search results available." | |
relevant_info = self._extract_key_info(search_results, question) | |
return self._formulate_direct_answer(relevant_info, question) | |
except Exception as e: | |
if "too many requests" in str(e).lower(): | |
time.sleep(2) | |
try: | |
search_results = cached_search(question) | |
relevant_info = self._extract_key_info(search_results, question) | |
return self._formulate_direct_answer(relevant_info, question) | |
except: | |
return self._get_fallback_answer(question) | |
return self._get_fallback_answer(question) | |
def _extract_key_info(self, search_results, question): | |
# Split results into sentences and find most relevant | |
sentences = search_results.split('. ') | |
if len(sentences) <= 3: | |
return search_results[:250] # If few sentences, return first portion | |
# Try to find sentence with keywords from question | |
keywords = [w for w in question.lower().split() if len(w) > 3] | |
for sentence in sentences: | |
sentence_lower = sentence.lower() | |
if any(keyword in sentence_lower for keyword in keywords): | |
return sentence | |
# Fallback to first few sentences | |
return '. '.join(sentences[:2]) | |
def _formulate_direct_answer(self, relevant_info, question): | |
if self.model: | |
return f"Based on the search: {relevant_info}" | |
return relevant_info | |
def _get_fallback_answer(self, question): | |
return f"Based on the information available, I cannot provide a specific answer to your question about {question.split()[0:3]}..." | |
def run_and_submit_all( profile: gr.OAuthProfile | None): | |
""" | |
Fetches all questions, runs the BasicAgent on them, submits all answers, | |
and displays the results. | |
""" | |
# --- Determine HF Space Runtime URL and Repo URL --- | |
space_id = os.getenv("SPACE_ID") # Get the SPACE_ID for sending link to the code | |
if profile: | |
username= f"{profile.username}" | |
print(f"User logged in: {username}") | |
else: | |
print("User not logged in.") | |
return "Please Login to Hugging Face with the button.", None | |
api_url = DEFAULT_API_URL | |
questions_url = f"{api_url}/questions" | |
submit_url = f"{api_url}/submit" | |
# 1. Instantiate Agent ( modify this part to create your agent) | |
try: | |
agent = BasicAgent(model= 'gemini/gemini-2.0-flash-exp', tools=[search_tool, visit_webpage, youtube_tool]) | |
except Exception as e: | |
print(f"Error instantiating agent: {e}") | |
return f"Error initializing agent: {e}", None | |
# In the case of an app running as a hugging Face space, this link points toward your codebase ( usefull for others so please keep it public) | |
agent_code = f"https://huggingface.co/spaces/{space_id}/tree/main" | |
print(agent_code) | |
# 2. Fetch Questions | |
print(f"Fetching questions from: {questions_url}") | |
try: | |
response = requests.get(questions_url, timeout=15) | |
response.raise_for_status() | |
questions_data = response.json() | |
if not questions_data: | |
print("Fetched questions list is empty.") | |
return "Fetched questions list is empty or invalid format.", None | |
print(f"Fetched {len(questions_data)} questions.") | |
except requests.exceptions.RequestException as e: | |
print(f"Error fetching questions: {e}") | |
return f"Error fetching questions: {e}", None | |
except requests.exceptions.JSONDecodeError as e: | |
print(f"Error decoding JSON response from questions endpoint: {e}") | |
print(f"Response text: {response.text[:500]}") | |
return f"Error decoding server response for questions: {e}", None | |
except Exception as e: | |
print(f"An unexpected error occurred fetching questions: {e}") | |
return f"An unexpected error occurred fetching questions: {e}", None | |
# 3. Run your Agent | |
results_log = [] | |
answers_payload = [] | |
print(f"Running agent on {len(questions_data)} questions...") | |
for idx, item in enumerate(questions_data): | |
task_id = item.get("task_id") | |
question_text = item.get("question") | |
if not task_id or question_text is None: | |
print(f"Skipping item with missing task_id or question: {item}") | |
continue | |
try: | |
submitted_answer = agent(question_text) | |
answers_payload.append({"task_id": task_id, "submitted_answer": submitted_answer}) | |
results_log.append({"Task ID": task_id, "Question": question_text, "Submitted Answer": submitted_answer}) | |
if idx % 5 == 0 and idx > 0: # Added: Add delay every 5 questions | |
time.sleep(1) # Wait 1 second between batches to avoid rate limiting | |
except Exception as e: | |
print(f"Error running agent on task {task_id}: {e}") | |
results_log.append({"Task ID": task_id, "Question": question_text, "Submitted Answer": f"AGENT ERROR: {e}"}) | |
if not answers_payload: | |
print("Agent did not produce any answers to submit.") | |
return "Agent did not produce any answers to submit.", pd.DataFrame(results_log) | |
# 4. Prepare Submission | |
submission_data = {"username": username.strip(), "agent_code": agent_code, "answers": answers_payload} | |
status_update = f"Agent finished. Submitting {len(answers_payload)} answers for user '{username}'..." | |
print(status_update) | |
# 5. Submit | |
print(f"Submitting {len(answers_payload)} answers to: {submit_url}") | |
try: | |
response = requests.post(submit_url, json=submission_data, timeout=60) | |
response.raise_for_status() | |
result_data = response.json() | |
final_status = ( | |
f"Submission Successful!\n" | |
f"User: {result_data.get('username')}\n" | |
f"Overall Score: {result_data.get('score', 'N/A')}% " | |
f"({result_data.get('correct_count', '?')}/{result_data.get('total_attempted', '?')} correct)\n" | |
f"Message: {result_data.get('message', 'No message received.')}" | |
) | |
print("Submission successful.") | |
results_df = pd.DataFrame(results_log) | |
return final_status, results_df | |
except requests.exceptions.HTTPError as e: | |
error_detail = f"Server responded with status {e.response.status_code}." | |
try: | |
error_json = e.response.json() | |
error_detail += f" Detail: {error_json.get('detail', e.response.text)}" | |
except requests.exceptions.JSONDecodeError: | |
error_detail += f" Response: {e.response.text[:500]}" | |
status_message = f"Submission Failed: {error_detail}" | |
print(status_message) | |
results_df = pd.DataFrame(results_log) | |
return status_message, results_df | |
except requests.exceptions.Timeout: | |
status_message = "Submission Failed: The request timed out." | |
print(status_message) | |
results_df = pd.DataFrame(results_log) | |
return status_message, results_df | |
except requests.exceptions.RequestException as e: | |
status_message = f"Submission Failed: Network error - {e}" | |
print(status_message) | |
results_df = pd.DataFrame(results_log) | |
return status_message, results_df | |
except Exception as e: | |
status_message = f"An unexpected error occurred during submission: {e}" | |
print(status_message) | |
results_df = pd.DataFrame(results_log) | |
return status_message, results_df | |
# --- Build Gradio Interface using Blocks --- | |
with gr.Blocks() as demo: | |
gr.Markdown("# Basic Agent Evaluation Runner") | |
gr.Markdown( | |
""" | |
**Instructions:** | |
1. Please clone this space, then modify the code to define your agent's logic, the tools, the necessary packages, etc ... | |
2. Log in to your Hugging Face account using the button below. This uses your HF username for submission. | |
3. Click 'Run Evaluation & Submit All Answers' to fetch questions, run your agent, submit answers, and see the score. | |
--- | |
**Disclaimers:** | |
Once clicking on the "submit button, it can take quite some time ( this is the time for the agent to go through all the questions). | |
This space provides a basic setup and is intentionally sub-optimal to encourage you to develop your own, more robust solution. For instance for the delay process of the submit button, a solution could be to cache the answers and submit in a seperate action or even to answer the questions in async. | |
""" | |
) | |
gr.LoginButton() | |
run_button = gr.Button("Run Evaluation & Submit All Answers") | |
status_output = gr.Textbox(label="Run Status / Submission Result", lines=5, interactive=False) | |
# Removed max_rows=10 from DataFrame constructor | |
results_table = gr.DataFrame(label="Questions and Agent Answers", wrap=True) | |
run_button.click( | |
fn=run_and_submit_all, | |
outputs=[status_output, results_table] | |
) | |
if __name__ == "__main__": | |
print("\n" + "-"*30 + " App Starting " + "-"*30) | |
# Check for SPACE_HOST and SPACE_ID at startup for information | |
space_host_startup = os.getenv("SPACE_HOST") | |
space_id_startup = os.getenv("SPACE_ID") # Get SPACE_ID at startup | |
if space_host_startup: | |
print(f"✅ SPACE_HOST found: {space_host_startup}") | |
print(f" Runtime URL should be: https://{space_host_startup}.hf.space") | |
else: | |
print("ℹ️ SPACE_HOST environment variable not found (running locally?).") | |
if space_id_startup: # Print repo URLs if SPACE_ID is found | |
print(f"✅ SPACE_ID found: {space_id_startup}") | |
print(f" Repo URL: https://huggingface.co/spaces/{space_id_startup}") | |
print(f" Repo Tree URL: https://huggingface.co/spaces/{space_id_startup}/tree/main") | |
else: | |
print("ℹ️ SPACE_ID environment variable not found (running locally?). Repo URL cannot be determined.") | |
print("-"*(60 + len(" App Starting ")) + "\n") | |
print("Launching Gradio Interface for Basic Agent Evaluation...") | |
demo.launch(debug=True, share=False) |