Spaces:
Sleeping
Sleeping
File size: 37,023 Bytes
4cf80d2 c574085 c6fcf0b 4cf80d2 cabf670 4cf80d2 c574085 4cf80d2 cabf670 c574085 cabf670 c574085 cabf670 c574085 cabf670 c574085 cabf670 c574085 cabf670 c574085 cabf670 c574085 cabf670 c574085 cabf670 c574085 cabf670 c574085 c08c98f c574085 c08c98f c574085 cabf670 c08c98f c574085 c08c98f c574085 c08c98f cabf670 c574085 cabf670 c574085 c08c98f cabf670 c574085 c08c98f c574085 c08c98f c574085 c08c98f c574085 c08c98f c574085 c08c98f c574085 cabf670 c574085 c08c98f c574085 cabf670 c574085 c08c98f c574085 cabf670 c574085 c08c98f c574085 cabf670 c574085 cabf670 c574085 cabf670 c574085 cabf670 c574085 cabf670 c574085 c08c98f c574085 cabf670 c574085 c08c98f c574085 c08c98f c574085 c08c98f c574085 c08c98f c574085 c08c98f c574085 cabf670 c574085 cabf670 c574085 cabf670 c574085 cabf670 c574085 cabf670 c574085 cabf670 c574085 cabf670 c574085 cabf670 c574085 cabf670 c574085 cabf670 c574085 c08c98f c574085 c08c98f cabf670 c574085 c08c98f c574085 cabf670 c574085 c08c98f c574085 cabf670 c08c98f cabf670 c574085 cabf670 c574085 cabf670 c08c98f cabf670 c574085 c08c98f c574085 c08c98f c574085 cabf670 c574085 cabf670 c574085 c08c98f c574085 c08c98f c574085 c08c98f c574085 c08c98f c574085 cabf670 c574085 c08c98f cabf670 c574085 c08c98f cabf670 c574085 c08c98f c574085 c08c98f c574085 cabf670 b494b53 c08c98f c574085 c08c98f cabf670 c574085 c08c98f cabf670 c08c98f cabf670 c08c98f c574085 c08c98f c574085 c08c98f c574085 c08c98f c574085 c08c98f c574085 c08c98f c574085 c08c98f c574085 c08c98f c574085 cabf670 c574085 cabf670 c574085 c08c98f c574085 c08c98f c574085 c08c98f c574085 c08c98f c574085 c08c98f c574085 c08c98f c574085 c08c98f c574085 c08c98f c574085 c08c98f c574085 c08c98f c574085 c08c98f c574085 c08c98f c574085 c08c98f c574085 c08c98f c574085 c08c98f c574085 c08c98f c574085 c08c98f c574085 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 643 644 645 646 647 648 649 650 651 652 653 654 655 656 657 658 659 660 661 662 663 664 665 666 667 668 669 670 671 672 673 674 675 676 677 678 679 680 681 682 683 684 685 686 687 688 689 690 691 692 693 694 695 696 697 698 699 700 701 702 703 704 705 706 707 708 709 710 711 712 713 714 715 716 717 718 719 720 721 722 723 724 725 726 727 728 729 730 731 732 733 734 735 736 737 738 739 740 741 742 743 744 745 746 747 748 749 750 751 752 753 754 755 756 757 758 759 760 761 762 763 764 765 766 767 768 769 770 771 772 773 774 775 776 777 778 779 780 781 782 783 784 785 786 787 788 789 790 791 792 793 794 795 796 797 798 799 800 801 802 803 804 805 806 807 808 809 810 811 812 813 814 815 816 817 818 819 820 821 822 823 824 825 826 827 828 829 830 831 832 833 834 835 836 837 838 839 840 841 842 843 844 845 846 847 848 849 850 851 852 853 854 855 856 857 858 859 860 861 862 863 864 865 866 867 868 869 870 871 872 873 874 875 876 877 878 879 880 881 882 883 884 885 886 887 888 889 890 891 892 893 894 895 896 897 898 899 900 901 902 903 904 905 906 907 908 909 910 911 912 913 914 915 916 917 918 919 920 921 922 923 924 925 926 927 928 929 930 931 932 933 934 935 936 937 938 939 940 941 942 943 944 945 946 947 948 949 950 951 952 953 954 955 956 957 958 959 960 961 962 963 964 965 966 967 968 969 970 971 972 973 974 975 976 977 978 979 980 981 982 983 984 985 986 987 988 989 990 991 992 993 994 995 996 997 998 999 1000 1001 1002 1003 1004 1005 1006 1007 |
import gzip
import os
import pickle
from glob import glob
from functools import lru_cache
import concurrent.futures
import threading
import time
import gradio as gr
import numpy as np
import plotly.graph_objects as go
import torch
from PIL import Image, ImageDraw
from plotly.subplots import make_subplots
# Constants
IMAGE_SIZE = 400
DATASET_LIST = ["imagenet", "oxford_flowers", "ucf101", "caltech101", "dtd", "eurosat"]
GRID_NUM = 14
pkl_root = "./data/out"
# Global cache for preloaded data
preloaded_data = {}
data_dict = {}
sae_data_dict = {}
activation_cache = {}
segmask_cache = {}
top_images_cache = {}
# Thread lock for thread-safe operations
data_lock = threading.Lock()
# Load data more efficiently
def load_all_data(image_root, pkl_root):
"""Load all necessary data with optimized caching"""
# Load image data
image_files = glob(f"{image_root}/*")
data_dict = {}
# Use thread pool for parallel image loading
def load_image_data(image_file):
image_name = os.path.basename(image_file).split(".")[0]
# Only load thumbnail for initial display, load full image on demand
thumbnail = Image.open(image_file).resize((IMAGE_SIZE, IMAGE_SIZE))
return image_name, {
"image": thumbnail,
"image_path": image_file,
}
# Load images in parallel
with concurrent.futures.ThreadPoolExecutor(max_workers=4) as executor:
results = executor.map(load_image_data, image_files)
for image_name, data in results:
data_dict[image_name] = data
# Load SAE data with minimal processing
sae_data_dict = {}
# Load mean acts only once
with open("./data/sae_data/mean_acts.pkl", "rb") as f:
sae_data_dict["mean_acts"] = pickle.load(f)
# Update all components when radio selection changes
radio_choices.change(
fn=update_all,
inputs=[image_selector, radio_choices, toggle_btn, model_selector],
outputs=[
seg_mask_display,
seg_mask_display_maple,
top_image_1,
top_image_2,
top_image_3,
act_value_1,
act_value_2,
act_value_3,
markdown_display,
markdown_display_2,
],
_js="""
function(img, radio, toggle, model) {
// Add a small delay to prevent rapid UI updates
clearTimeout(window._radioTimeout);
return new Promise((resolve) => {
window._radioTimeout = setTimeout(() => {
resolve([img, radio, toggle, model]);
}, 100);
});
}
"""
)
# Update components when toggle button changes
toggle_btn.change(
fn=show_activation_heatmap_clip,
inputs=[image_selector, radio_choices, toggle_btn],
outputs=[
seg_mask_display,
top_image_1,
top_image_2,
top_image_3,
act_value_1,
act_value_2,
act_value_3,
],
_js="""
function(img, radio, toggle) {
// Add a small delay to prevent rapid UI updates
clearTimeout(window._toggleTimeout);
return new Promise((resolve) => {
window._toggleTimeout = setTimeout(() => {
resolve([img, radio, toggle]);
}, 100);
});
}
"""
)
# Initialize UI with default values
default_options = get_init_radio_options(default_image_name, model_options[0])
if default_options:
default_option = default_options[0]
# Set initial values to avoid blank UI at start
gr.on(
gr.Blocks.load,
fn=lambda: update_all(
default_image_name,
default_option,
False,
model_options[0]
),
outputs=[
seg_mask_display,
seg_mask_display_maple,
top_image_1,
top_image_2,
top_image_3,
act_value_1,
act_value_2,
act_value_3,
markdown_display,
markdown_display_2,
],
)
# Add a status indicator to show processing state
status_indicator = gr.Markdown("Status: Ready")
# Add a refresh button to manually reload data if needed
refresh_btn = gr.Button("Refresh Data")
def reload_data():
global data_dict, sae_data_dict
# Update status
yield "Status: Reloading data..."
# Reload data
try:
data_dict, sae_data_dict = load_all_data(image_root="./data/image", pkl_root=pkl_root)
yield "Status: Data reloaded successfully!"
except Exception as e:
yield f"Status: Error reloading data - {str(e)}"
refresh_btn.click(
fn=reload_data,
inputs=[],
outputs=[status_indicator],
queue=False
)
# Launch app with optimized settings
demo.queue(concurrency_count=3, max_size=10) # Balanced concurrency for better performance
# Add startup message
print("Starting visualization application...")
print(f"Loaded {len(data_dict)} images and {len(sae_data_dict)} datasets")
# Launch with proper error handling
demo.launch(
share=False, # Don't share publicly
debug=False, # Disable debug mode for production
show_error=True, # Show errors for debugging
quiet=False, # Show startup messages
favicon_path=None, # Default favicon
server_port=None, # Use default port
server_name=None, # Bind to all interfaces
height=None, # Use default height
width=None, # Use default width
enable_queue=True, # Enable queue for better performance
) dictionary for dataset values
sae_data_dict["mean_act_values"] = {}
# Load dataset values in parallel
def load_dataset_values(dataset):
with gzip.open(f"./data/sae_data/mean_act_values_{dataset}.pkl.gz", "rb") as f:
return dataset, pickle.load(f)
with concurrent.futures.ThreadPoolExecutor(max_workers=3) as executor:
futures = [
executor.submit(load_dataset_values, dataset)
for dataset in ["imagenet", "imagenet-sketch", "caltech101"]
]
for future in concurrent.futures.as_completed(futures):
dataset, data = future.result()
sae_data_dict["mean_act_values"][dataset] = data
return data_dict, sae_data_dict
# Cache activation data with LRU cache
@lru_cache(maxsize=32)
def preload_activation(image_name, model_name):
"""Preload and cache activation data for a specific image and model"""
image_file = f"{pkl_root}/{model_name}/{image_name}.pkl.gz"
try:
with gzip.open(image_file, "rb") as f:
return pickle.load(f)
except Exception as e:
print(f"Error loading {image_file}: {e}")
return None
# Get activation with caching
def get_data(image_name, model_type):
"""Get activation data with caching for better performance"""
cache_key = f"{image_name}_{model_type}"
with data_lock:
if cache_key not in activation_cache:
activation_cache[cache_key] = preload_activation(image_name, model_type)
return activation_cache[cache_key]
def get_activation_distribution(image_name, model_type):
"""Get activation distribution with noise filtering"""
activation = get_data(image_name, model_type)
if activation is None:
# Return empty tensor if data loading failed
return torch.zeros((GRID_NUM * GRID_NUM + 1, 1000))
activation = activation[0]
# Filter out noisy features
noisy_features_indices = (
(sae_data_dict["mean_acts"]["imagenet"] > 0.1).nonzero()[0].tolist()
)
activation[:, noisy_features_indices] = 0
return activation
def get_grid_loc(evt, image):
"""Get grid location from click event"""
# Get click coordinates
x, y = evt._data["index"][0], evt._data["index"][1]
cell_width = image.width // GRID_NUM
cell_height = image.height // GRID_NUM
grid_x = x // cell_width
grid_y = y // cell_height
return grid_x, grid_y, cell_width, cell_height
def highlight_grid(evt, image_name):
"""Highlight grid cell on click"""
image = data_dict[image_name]["image"]
grid_x, grid_y, cell_width, cell_height = get_grid_loc(evt, image)
highlighted_image = image.copy()
draw = ImageDraw.Draw(highlighted_image)
box = [
grid_x * cell_width,
grid_y * cell_height,
(grid_x + 1) * cell_width,
(grid_y + 1) * cell_height,
]
draw.rectangle(box, outline="red", width=3)
return highlighted_image
def load_image(img_name):
"""Load image by name"""
return data_dict[img_name]["image"]
# Optimized plotting with less annotations
def plot_activations(
all_activation,
tile_activations=None,
grid_x=None,
grid_y=None,
top_k=5,
colors=("blue", "cyan"),
model_name="CLIP",
):
"""Plot activations with optimized rendering"""
fig = go.Figure()
def _add_scatter_with_annotation(fig, activations, model_name, color, label):
# Only plot non-zero values to reduce points
non_zero_indices = np.where(np.abs(activations) > 1e-5)[0]
if len(non_zero_indices) == 0:
# If all values are near zero, use full array
non_zero_indices = np.arange(len(activations))
fig.add_trace(
go.Scatter(
x=non_zero_indices,
y=activations[non_zero_indices],
mode="lines",
name=label,
line=dict(color=color, dash="solid"),
showlegend=True,
)
)
# Only annotate the top_k activations
top_neurons = np.argsort(activations)[::-1][:top_k]
for idx in top_neurons:
fig.add_annotation(
x=idx,
y=activations[idx],
text=str(idx),
showarrow=True,
arrowhead=2,
ax=0,
ay=-15,
arrowcolor=color,
opacity=0.7,
)
return fig
label = f"{model_name.split('-')[-1]} Image-level"
fig = _add_scatter_with_annotation(
fig, all_activation, model_name, colors[0], label
)
if tile_activations is not None:
label = f"{model_name.split('-')[-1]} Tile ({grid_x}, {grid_y})"
fig = _add_scatter_with_annotation(
fig, tile_activations, model_name, colors[1], label
)
# Optimize layout with minimal settings
fig.update_layout(
title="Activation Distribution",
xaxis_title="SAE latent index",
yaxis_title="Activation Value",
template="plotly_white",
legend=dict(orientation="h", yanchor="middle", y=0.5, xanchor="center", x=0.5),
)
return fig
def get_activations(evt, selected_image, model_name, colors):
"""Get activations for plotting"""
activation = get_activation_distribution(selected_image, model_name)
all_activation = activation.mean(0)
tile_activations = None
grid_x = None
grid_y = None
if evt is not None and evt._data is not None:
image = data_dict[selected_image]["image"]
grid_x, grid_y, cell_width, cell_height = get_grid_loc(evt, image)
token_idx = grid_y * GRID_NUM + grid_x + 1
# Ensure token_idx is within bounds
if token_idx < activation.shape[0]:
tile_activations = activation[token_idx]
fig = plot_activations(
all_activation,
tile_activations,
grid_x,
grid_y,
top_k=5,
model_name=model_name,
colors=colors,
)
return fig
# Cache plot results
@lru_cache(maxsize=16)
def plot_activation_distribution(evt_data, selected_image, model_name):
"""Plot activation distribution with caching"""
# Convert event data to hashable format for caching
if evt_data is not None:
evt = type('obj', (object,), {'_data': evt_data})
else:
evt = None
fig = make_subplots(
rows=2,
cols=1,
shared_xaxes=True,
subplot_titles=["CLIP Activation", f"{model_name} Activation"],
)
fig_clip = get_activations(
evt, selected_image, "CLIP", colors=("#00b4d8", "#90e0ef")
)
fig_maple = get_activations(
evt, selected_image, model_name, colors=("#ff5a5f", "#ffcad4")
)
def _attach_fig(fig, sub_fig, row, col, yref):
for trace in sub_fig.data:
fig.add_trace(trace, row=row, col=col)
for annotation in sub_fig.layout.annotations:
annotation.update(yref=yref)
fig.add_annotation(annotation)
return fig
fig = _attach_fig(fig, fig_clip, row=1, col=1, yref="y1")
fig = _attach_fig(fig, fig_maple, row=2, col=1, yref="y2")
# Optimize layout with minimal settings
fig.update_xaxes(title_text="SAE Latent Index", row=2, col=1)
fig.update_xaxes(title_text="SAE Latent Index", row=1, col=1)
fig.update_yaxes(title_text="Activation Value", row=1, col=1)
fig.update_yaxes(title_text="Activation Value", row=2, col=1)
fig.update_layout(
template="plotly_white",
showlegend=True,
legend=dict(orientation="h", yanchor="bottom", y=-0.2, xanchor="center", x=0.5),
margin=dict(l=20, r=20, t=40, b=20),
)
return fig
# Cache segmentation masks
@lru_cache(maxsize=32)
def get_segmask(selected_image, slider_value, model_type):
"""Generate segmentation mask with caching"""
try:
# Check if image exists
if selected_image not in data_dict:
print(f"Image {selected_image} not found in data dictionary")
# Return blank mask with IMAGE_SIZE dimensions
return np.zeros((IMAGE_SIZE, IMAGE_SIZE, 4), dtype=np.uint8)
# Use cache if available
cache_key = f"{selected_image}_{slider_value}_{model_type}"
with data_lock:
if cache_key in segmask_cache:
return segmask_cache[cache_key]
# Get image
image = data_dict[selected_image]["image"]
# Get activation data
sae_act = get_data(selected_image, model_type)
if sae_act is None:
# Return blank mask if data loading failed
return np.zeros((image.height, image.width, 4), dtype=np.uint8)
# Handle array shape issues
try:
# Check array shape and dimensions
if isinstance(sae_act, tuple) and len(sae_act) > 0:
# First element of tuple
act_data = sae_act[0]
else:
# Direct array
act_data = sae_act
# Check if slider_value is within bounds
if slider_value >= act_data.shape[1]:
print(f"Slider value {slider_value} out of bounds for activation shape {act_data.shape}")
return np.zeros((image.height, image.width, 4), dtype=np.uint8)
# Get activation for specific latent
temp = act_data[:, slider_value]
# Skip first token (CLS token) and reshape to grid
if len(temp) > 1: # Ensure we have enough tokens
mask = torch.Tensor(temp[1:].reshape(GRID_NUM, GRID_NUM)).view(1, 1, GRID_NUM, GRID_NUM)
# Upsample to image dimensions
mask = torch.nn.functional.interpolate(mask, (image.height, image.width))[0][0].numpy()
# Normalize mask values between 0 and 1
mask_min, mask_max = mask.min(), mask.max()
if mask_max > mask_min: # Avoid division by zero
mask = (mask - mask_min) / (mask_max - mask_min)
else:
mask = np.zeros_like(mask)
else:
# Not enough tokens
print(f"Not enough tokens in activation data: {len(temp)}")
return np.zeros((image.height, image.width, 4), dtype=np.uint8)
except Exception as e:
print(f"Error processing activation data: {e}")
print(f"Shape info - sae_act: {type(sae_act)}, slider_value: {slider_value}")
return np.zeros((image.height, image.width, 4), dtype=np.uint8)
# Create RGBA overlay
try:
# Set base opacity for darkened areas
base_opacity = 30
# Convert image to numpy array
image_array = np.array(image)
# Handle grayscale images
if len(image_array.shape) == 2:
# Convert grayscale to RGB
image_array = np.stack([image_array] * 3, axis=-1)
elif image_array.shape[2] == 4:
# Use only RGB channels
image_array = image_array[..., :3]
# Create overlay
rgba_overlay = np.zeros((mask.shape[0], mask.shape[1], 4), dtype=np.uint8)
rgba_overlay[..., :3] = image_array
# Use vectorized operations for better performance
darkened_image = (image_array * (base_opacity / 255)).astype(np.uint8)
# Create mask for darkened areas
mask_threshold = 0.1 # Adjust threshold if needed
mask_zero = mask < mask_threshold
# Apply darkening only to low-activation areas
rgba_overlay[mask_zero, :3] = darkened_image[mask_zero]
# Set alpha channel
rgba_overlay[..., 3] = 255 # Fully opaque
# Cache result for future use
with data_lock:
segmask_cache[cache_key] = rgba_overlay
return rgba_overlay
except Exception as e:
print(f"Error creating overlay: {e}")
return np.zeros((image.height, image.width, 4), dtype=np.uint8)
except Exception as e:
print(f"Unexpected error in get_segmask: {e}")
# Return a blank image of standard size
return np.zeros((IMAGE_SIZE, IMAGE_SIZE, 4), dtype=np.uint8)
# Cache top images
@lru_cache(maxsize=32)
def get_top_images(slider_value, toggle_btn):
"""Get top images with caching"""
cache_key = f"{slider_value}_{toggle_btn}"
if cache_key in top_images_cache:
return top_images_cache[cache_key]
def _get_images(dataset_path):
top_image_paths = [
os.path.join(dataset_path, "imagenet", f"{slider_value}.jpg"),
os.path.join(dataset_path, "imagenet-sketch", f"{slider_value}.jpg"),
os.path.join(dataset_path, "caltech101", f"{slider_value}.jpg"),
]
top_images = []
for path in top_image_paths:
if os.path.exists(path):
top_images.append(Image.open(path))
else:
top_images.append(Image.new("RGB", (256, 256), (255, 255, 255)))
return top_images
if toggle_btn:
top_images = _get_images("./data/top_images_masked")
else:
top_images = _get_images("./data/top_images")
# Cache result
top_images_cache[cache_key] = top_images
return top_images
def show_activation_heatmap(selected_image, slider_value, model_type, toggle_btn=False):
"""Show activation heatmap with optimized processing"""
try:
# Parse slider value safely
if not slider_value:
# Fallback to the first option if no slider value
radio_options = get_init_radio_options(selected_image, model_type)
if not radio_options:
# Create placeholder data if no options available
return (
np.zeros((IMAGE_SIZE, IMAGE_SIZE, 4), dtype=np.uint8),
[Image.new("RGB", (256, 256), (255, 255, 255)) for _ in range(3)],
["#### Activation values: No data available"] * 3
)
slider_value = radio_options[0]
# Extract the integer value
try:
slider_value_int = int(slider_value.split("-")[-1])
except (ValueError, IndexError):
print(f"Error parsing slider value: {slider_value}")
slider_value_int = 0
# Process in parallel with thread pool and add timeout
results = []
with concurrent.futures.ThreadPoolExecutor(max_workers=2) as executor:
# Start both tasks
segmask_future = executor.submit(get_segmask, selected_image, slider_value_int, model_type)
top_images_future = executor.submit(get_top_images, slider_value_int, toggle_btn)
# Get results with timeout to prevent hanging
try:
rgba_overlay = segmask_future.result(timeout=5)
except (concurrent.futures.TimeoutError, Exception) as e:
print(f"Error or timeout generating segmentation mask: {e}")
rgba_overlay = np.zeros((IMAGE_SIZE, IMAGE_SIZE, 4), dtype=np.uint8)
try:
top_images = top_images_future.result(timeout=5)
except (concurrent.futures.TimeoutError, Exception) as e:
print(f"Error or timeout getting top images: {e}")
top_images = [Image.new("RGB", (256, 256), (255, 255, 255)) for _ in range(3)]
# Prepare activation values with error handling
act_values = []
for dataset in ["imagenet", "imagenet-sketch", "caltech101"]:
try:
if dataset in sae_data_dict["mean_act_values"]:
values = sae_data_dict["mean_act_values"][dataset]
if slider_value_int < values.shape[0]:
act_value = values[slider_value_int, :5]
act_value = [str(round(value, 3)) for value in act_value]
act_value = " | ".join(act_value)
out = f"#### Activation values: {act_value}"
else:
out = f"#### Activation values: Index out of range"
else:
out = f"#### Activation values: Dataset not available"
except Exception as e:
print(f"Error getting activation values for {dataset}: {e}")
out = f"#### Activation values: Error retrieving data"
act_values.append(out)
return rgba_overlay, top_images, act_values
except Exception as e:
print(f"Error in show_activation_heatmap: {e}")
# Return placeholder data in case of error
return (
np.zeros((IMAGE_SIZE, IMAGE_SIZE, 4), dtype=np.uint8),
[Image.new("RGB", (256, 256), (255, 255, 255)) for _ in range(3)],
["#### Activation values: Error occurred"] * 3
)
def show_activation_heatmap_clip(selected_image, slider_value, toggle_btn):
"""Show CLIP activation heatmap"""
rgba_overlay, top_images, act_values = show_activation_heatmap(
selected_image, slider_value, "CLIP", toggle_btn
)
return (
rgba_overlay,
top_images[0],
top_images[1],
top_images[2],
act_values[0],
act_values[1],
act_values[2],
)
def show_activation_heatmap_maple(selected_image, slider_value, model_name):
"""Show MaPLE activation heatmap"""
slider_value_int = int(slider_value.split("-")[-1])
rgba_overlay = get_segmask(selected_image, slider_value_int, model_name)
return rgba_overlay
# Optimize radio options generation
def get_init_radio_options(selected_image, model_name):
"""Get initial radio options with optimized processing"""
clip_neuron_dict = {}
maple_neuron_dict = {}
def _get_top_actvation(selected_image, model_name, neuron_dict, top_k=5):
activations = get_activation_distribution(selected_image, model_name).mean(0)
top_neurons = list(np.argsort(activations)[::-1][:top_k])
for top_neuron in top_neurons:
neuron_dict[top_neuron] = activations[top_neuron]
sorted_dict = dict(
sorted(neuron_dict.items(), key=lambda item: item[1], reverse=True)
)
return sorted_dict
# Process in parallel
with concurrent.futures.ThreadPoolExecutor(max_workers=2) as executor:
future_clip = executor.submit(_get_top_actvation, selected_image, "CLIP", {})
future_maple = executor.submit(_get_top_actvation, selected_image, model_name, {})
clip_neuron_dict = future_clip.result()
maple_neuron_dict = future_maple.result()
radio_choices = get_radio_names(clip_neuron_dict, maple_neuron_dict)
return radio_choices
def get_radio_names(clip_neuron_dict, maple_neuron_dict):
"""Get radio button names based on neuron activations"""
clip_keys = list(clip_neuron_dict.keys())
maple_keys = list(maple_neuron_dict.keys())
# Use set operations for better performance
common_keys = list(set(clip_keys).intersection(set(maple_keys)))
clip_only_keys = list(set(clip_keys) - set(maple_keys))
maple_only_keys = list(set(maple_keys) - set(clip_keys))
# Sort keys by activation values
common_keys.sort(
key=lambda x: max(clip_neuron_dict.get(x, 0), maple_neuron_dict.get(x, 0)),
reverse=True
)
clip_only_keys.sort(key=lambda x: clip_neuron_dict.get(x, 0), reverse=True)
maple_only_keys.sort(key=lambda x: maple_neuron_dict.get(x, 0), reverse=True)
# Limit number of choices to improve performance
out = []
out.extend([f"common-{i}" for i in common_keys[:5]])
out.extend([f"CLIP-{i}" for i in clip_only_keys[:5]])
out.extend([f"MaPLE-{i}" for i in maple_only_keys[:5]])
return out
def update_radio_options(evt, selected_image, model_name):
"""Update radio options based on user interaction"""
def _get_top_actvation(evt, selected_image, model_name):
neuron_dict = {}
all_activation = get_activation_distribution(selected_image, model_name)
image_activation = all_activation.mean(0)
# Get top activations from image-level
top_neurons = list(np.argsort(image_activation)[::-1][:5])
for top_neuron in top_neurons:
neuron_dict[top_neuron] = image_activation[top_neuron]
# Get top activations from tile-level if available
if evt is not None and evt._data is not None and isinstance(evt._data["index"], list):
image = data_dict[selected_image]["image"]
grid_x, grid_y, cell_width, cell_height = get_grid_loc(evt, image)
token_idx = grid_y * GRID_NUM + grid_x + 1
# Ensure token_idx is within bounds
if token_idx < all_activation.shape[0]:
tile_activations = all_activation[token_idx]
top_tile_neurons = list(np.argsort(tile_activations)[::-1][:5])
for top_neuron in top_tile_neurons:
neuron_dict[top_neuron] = max(
neuron_dict.get(top_neuron, 0),
tile_activations[top_neuron]
)
# Sort by activation value
return dict(sorted(neuron_dict.items(), key=lambda item: item[1], reverse=True))
# Process in parallel
with concurrent.futures.ThreadPoolExecutor(max_workers=2) as executor:
future_clip = executor.submit(_get_top_actvation, evt, selected_image, "CLIP")
future_maple = executor.submit(_get_top_actvation, evt, selected_image, model_name)
clip_neuron_dict = future_clip.result()
maple_neuron_dict = future_maple.result()
# Get radio choices
radio_choices = get_radio_names(clip_neuron_dict, maple_neuron_dict)
# Create radio component
radio = gr.Radio(
choices=radio_choices,
label="Top activating SAE latent",
value=radio_choices[0] if radio_choices else None
)
return radio
def update_markdown(option_value):
"""Update markdown text"""
latent_idx = int(option_value.split("-")[-1])
out_1 = f"## Segmentation mask for the selected SAE latent - {latent_idx}"
out_2 = f"## Top reference images for the selected SAE latent - {latent_idx}"
return out_1, out_2
def update_all(selected_image, slider_value, toggle_btn, model_name):
"""Update all UI components in optimized way"""
# Use a thread pool to parallelize operations
with concurrent.futures.ThreadPoolExecutor(max_workers=2) as executor:
# Start both tasks
clip_future = executor.submit(
show_activation_heatmap_clip,
selected_image,
slider_value,
toggle_btn
)
maple_future = executor.submit(
show_activation_heatmap_maple,
selected_image,
slider_value,
model_name
)
# Get results
(
seg_mask_display,
top_image_1,
top_image_2,
top_image_3,
act_value_1,
act_value_2,
act_value_3,
) = clip_future.result()
seg_mask_display_maple = maple_future.result()
# Update markdown
markdown_display, markdown_display_2 = update_markdown(slider_value)
return (
seg_mask_display,
seg_mask_display_maple,
top_image_1,
top_image_2,
top_image_3,
act_value_1,
act_value_2,
act_value_3,
markdown_display,
markdown_display_2,
)
# Initialize data - load at startup
data_dict, sae_data_dict = load_all_data(image_root="./data/image", pkl_root=pkl_root)
default_image_name = "christmas-imagenet"
# Define UI with lazy loading
with gr.Blocks(
theme=gr.themes.Citrus(),
css="""
.image-row .gr-image { margin: 0 !important; padding: 0 !important; }
.image-row img { width: auto; height: 50px; } /* Set a uniform height for all images */
""",
) as demo:
with gr.Row():
with gr.Column():
# Left View: Image selection and click handling
gr.Markdown("## Select input image and patch on the image")
image_selector = gr.Dropdown(
choices=list(data_dict.keys()),
value=default_image_name,
label="Select Image",
)
image_display = gr.Image(
value=load_image(default_image_name),
type="pil",
interactive=True,
)
# Update image display when a new image is selected (with debounce)
image_selector.change(
fn=load_image,
inputs=image_selector,
outputs=image_display,
_js="""
function(img_name) {
// Simple debounce
clearTimeout(window._imageSelectTimeout);
return new Promise((resolve) => {
window._imageSelectTimeout = setTimeout(() => {
resolve(img_name);
}, 100);
});
}
"""
)
# Handle grid highlighting
image_display.select(
fn=highlight_grid,
inputs=[image_selector],
outputs=[image_display]
)
with gr.Column():
gr.Markdown("## SAE latent activations of CLIP and MaPLE")
model_options = [f"MaPLE-{dataset_name}" for dataset_name in DATASET_LIST]
model_selector = gr.Dropdown(
choices=model_options,
value=model_options[0],
label="Select adapted model (MaPLe)",
)
# Initialize with a placeholder plot to avoid delays
neuron_plot = gr.Plot(
label="Neuron Activation",
show_label=False
)
# Add event handlers with proper data flow
def update_plot(evt, selected_image, model_name):
if hasattr(evt, '_data') and evt._data is not None:
return plot_activation_distribution(
tuple(map(tuple, evt._data.get('index', []))),
selected_image,
model_name
)
return plot_activation_distribution(None, selected_image, model_name)
# Load initial plot after UI is rendered
gr.on(
[image_selector.change, model_selector.change],
fn=lambda img, model: plot_activation_distribution(None, img, model),
inputs=[image_selector, model_selector],
outputs=neuron_plot,
)
# Update plot on image click
image_display.select(
fn=update_plot,
inputs=[image_selector, model_selector],
outputs=neuron_plot,
)
with gr.Row():
with gr.Column():
# Initialize radio options
radio_names = gr.State(value=get_init_radio_options(default_image_name, model_options[0]))
# Initialize markdown displays
markdown_display = gr.Markdown(f"## Segmentation mask for the selected SAE latent")
# Initialize segmentation displays
gr.Markdown("### Localize SAE latent activation using CLIP")
seg_mask_display = gr.Image(type="pil", show_label=False)
gr.Markdown("### Localize SAE latent activation using MaPLE")
seg_mask_display_maple = gr.Image(type="pil", show_label=False)
with gr.Column():
gr.Markdown("## Top activating SAE latent index")
# Initialize radio component
radio_choices = gr.Radio(
label="Top activating SAE latent",
interactive=True,
)
# Initialize as soon as UI loads
gr.on(
gr.Blocks.load,
fn=lambda: gr.Radio.update(
choices=get_init_radio_options(default_image_name, model_options[0]),
value=get_init_radio_options(default_image_name, model_options[0])[0]
),
outputs=radio_choices
)
toggle_btn = gr.Checkbox(label="Show segmentation mask", value=False)
markdown_display_2 = gr.Markdown(f"## Top reference images for the selected SAE latent")
# Initialize image displays
gr.Markdown("### ImageNet")
top_image_1 = gr.Image(type="pil", label="ImageNet", show_label=False)
act_value_1 = gr.Markdown()
gr.Markdown("### ImageNet-Sketch")
top_image_2 = gr.Image(type="pil", label="ImageNet-Sketch", show_label=False)
act_value_2 = gr.Markdown()
gr.Markdown("### Caltech101")
top_image_3 = gr.Image(type="pil", label="Caltech101", show_label=False)
act_value_3 = gr.Markdown()
# Update radio options on image interaction
image_display.select(
fn=update_radio_options,
inputs=[image_selector, model_selector],
outputs=radio_choices,
)
# Update radio options on model change
model_selector.change(
fn=update_radio_options,
inputs=[image_selector, model_selector],
outputs=radio_choices,
)
# Update radio options on image selection
image_selector.change(
fn=update_radio_options,
inputs=[image_selector, model_selector],
outputs=radio_choices,
)
# Initialize |