File size: 37,023 Bytes
4cf80d2
 
 
 
c574085
 
 
 
c6fcf0b
4cf80d2
 
cabf670
4cf80d2
 
 
 
c574085
4cf80d2
 
 
cabf670
c574085
 
cabf670
c574085
 
 
 
 
cabf670
c574085
 
cabf670
c574085
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
cabf670
c574085
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
cabf670
c574085
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
cabf670
c574085
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
cabf670
 
 
 
c574085
cabf670
 
 
c574085
cabf670
 
c574085
c08c98f
 
c574085
c08c98f
 
 
 
c574085
 
cabf670
c08c98f
c574085
c08c98f
 
 
 
 
 
 
 
 
c574085
c08c98f
 
cabf670
c574085
 
cabf670
c574085
c08c98f
cabf670
 
 
 
 
 
 
 
c574085
c08c98f
c574085
c08c98f
c574085
 
 
 
 
 
c08c98f
 
c574085
 
c08c98f
 
 
 
 
 
c574085
 
c08c98f
 
 
 
 
 
 
 
 
 
 
 
 
 
c574085
 
cabf670
 
 
c574085
c08c98f
c574085
cabf670
 
 
c574085
 
c08c98f
 
 
 
 
c574085
cabf670
c574085
c08c98f
 
c574085
 
cabf670
 
c574085
cabf670
 
 
c574085
 
 
 
 
 
 
cabf670
c574085
cabf670
 
 
 
 
 
 
 
 
c574085
cabf670
 
c574085
 
 
 
 
 
 
 
 
 
c08c98f
 
 
 
 
 
c574085
cabf670
 
 
 
 
 
c574085
c08c98f
 
 
c574085
c08c98f
 
 
 
c574085
c08c98f
 
c574085
 
c08c98f
 
 
 
 
 
 
 
 
 
c574085
c08c98f
 
c574085
 
cabf670
c574085
cabf670
c574085
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
cabf670
c574085
 
 
cabf670
c574085
 
cabf670
c574085
 
 
 
 
 
cabf670
 
 
 
 
 
c574085
 
 
 
 
 
 
 
cabf670
c574085
cabf670
 
 
 
c574085
 
 
 
cabf670
 
 
c574085
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
cabf670
 
c574085
c08c98f
 
 
c574085
c08c98f
 
 
 
 
 
 
 
 
 
cabf670
c574085
 
 
 
c08c98f
 
c574085
cabf670
c574085
c08c98f
 
c574085
cabf670
c08c98f
 
 
 
cabf670
 
 
 
c574085
 
 
 
 
 
 
 
 
cabf670
c574085
cabf670
c08c98f
cabf670
c574085
c08c98f
 
c574085
 
c08c98f
c574085
 
 
 
cabf670
c574085
 
cabf670
c574085
 
 
 
c08c98f
 
 
 
c574085
c08c98f
 
c574085
 
 
 
c08c98f
 
c574085
 
 
 
 
 
 
 
 
 
 
 
 
 
c08c98f
c574085
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
cabf670
c574085
 
c08c98f
cabf670
c574085
c08c98f
 
 
 
 
cabf670
c574085
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
c08c98f
c574085
c08c98f
 
 
 
 
 
 
 
 
 
 
 
 
c574085
cabf670
b494b53
c08c98f
c574085
c08c98f
 
 
 
cabf670
c574085
c08c98f
 
 
cabf670
c08c98f
 
cabf670
c08c98f
 
 
 
c574085
c08c98f
 
 
c574085
 
c08c98f
c574085
c08c98f
 
c574085
 
 
 
 
 
 
 
 
 
 
c08c98f
c574085
 
c08c98f
c574085
 
 
c08c98f
c574085
c08c98f
 
 
 
 
 
 
 
c574085
 
cabf670
c574085
 
cabf670
c574085
 
 
 
 
 
 
 
 
 
 
 
 
 
 
c08c98f
 
 
c574085
 
c08c98f
c574085
c08c98f
 
 
 
 
 
c574085
 
 
 
 
 
 
c08c98f
c574085
 
c08c98f
c574085
 
c08c98f
 
c574085
 
c08c98f
 
 
 
c574085
 
 
 
 
 
 
 
 
c08c98f
c574085
 
 
 
 
 
c08c98f
c574085
 
 
c08c98f
c574085
 
 
c08c98f
c574085
 
 
 
c08c98f
 
 
c574085
c08c98f
c574085
 
c08c98f
 
 
c574085
c08c98f
c574085
 
 
c08c98f
 
c574085
c08c98f
c574085
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917
918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
966
967
968
969
970
971
972
973
974
975
976
977
978
979
980
981
982
983
984
985
986
987
988
989
990
991
992
993
994
995
996
997
998
999
1000
1001
1002
1003
1004
1005
1006
1007
import gzip
import os
import pickle
from glob import glob
from functools import lru_cache
import concurrent.futures
import threading
import time

import gradio as gr
import numpy as np
import plotly.graph_objects as go
import torch
from PIL import Image, ImageDraw
from plotly.subplots import make_subplots

# Constants
IMAGE_SIZE = 400
DATASET_LIST = ["imagenet", "oxford_flowers", "ucf101", "caltech101", "dtd", "eurosat"]
GRID_NUM = 14
pkl_root = "./data/out"

# Global cache for preloaded data
preloaded_data = {}
data_dict = {}
sae_data_dict = {}
activation_cache = {}
segmask_cache = {}
top_images_cache = {}

# Thread lock for thread-safe operations
data_lock = threading.Lock()

# Load data more efficiently
def load_all_data(image_root, pkl_root):
    """Load all necessary data with optimized caching"""
    # Load image data
    image_files = glob(f"{image_root}/*")
    data_dict = {}
    
    # Use thread pool for parallel image loading
    def load_image_data(image_file):
        image_name = os.path.basename(image_file).split(".")[0]
        # Only load thumbnail for initial display, load full image on demand
        thumbnail = Image.open(image_file).resize((IMAGE_SIZE, IMAGE_SIZE))
        return image_name, {
            "image": thumbnail,
            "image_path": image_file,
        }
    
    # Load images in parallel
    with concurrent.futures.ThreadPoolExecutor(max_workers=4) as executor:
        results = executor.map(load_image_data, image_files)
        for image_name, data in results:
            data_dict[image_name] = data
    
    # Load SAE data with minimal processing
    sae_data_dict = {}
    
    # Load mean acts only once
    with open("./data/sae_data/mean_acts.pkl", "rb") as f:
        sae_data_dict["mean_acts"] = pickle.load(f)
    
    # Update all components when radio selection changes
        radio_choices.change(
            fn=update_all,
            inputs=[image_selector, radio_choices, toggle_btn, model_selector],
            outputs=[
                seg_mask_display,
                seg_mask_display_maple,
                top_image_1,
                top_image_2,
                top_image_3,
                act_value_1,
                act_value_2,
                act_value_3,
                markdown_display,
                markdown_display_2,
            ],
            _js="""
            function(img, radio, toggle, model) {
                // Add a small delay to prevent rapid UI updates
                clearTimeout(window._radioTimeout);
                return new Promise((resolve) => {
                    window._radioTimeout = setTimeout(() => {
                        resolve([img, radio, toggle, model]);
                    }, 100);
                });
            }
            """
        )
        
        # Update components when toggle button changes
        toggle_btn.change(
            fn=show_activation_heatmap_clip,
            inputs=[image_selector, radio_choices, toggle_btn],
            outputs=[
                seg_mask_display,
                top_image_1,
                top_image_2,
                top_image_3,
                act_value_1,
                act_value_2,
                act_value_3,
            ],
            _js="""
            function(img, radio, toggle) {
                // Add a small delay to prevent rapid UI updates
                clearTimeout(window._toggleTimeout);
                return new Promise((resolve) => {
                    window._toggleTimeout = setTimeout(() => {
                        resolve([img, radio, toggle]);
                    }, 100);
                });
            }
            """
        )

    # Initialize UI with default values
    default_options = get_init_radio_options(default_image_name, model_options[0])
    if default_options:
        default_option = default_options[0]
        
        # Set initial values to avoid blank UI at start
        gr.on(
            gr.Blocks.load,
            fn=lambda: update_all(
                default_image_name, 
                default_option,
                False,
                model_options[0]
            ),
            outputs=[
                seg_mask_display,
                seg_mask_display_maple,
                top_image_1,
                top_image_2,
                top_image_3,
                act_value_1,
                act_value_2,
                act_value_3,
                markdown_display,
                markdown_display_2,
            ],
        )

    # Add a status indicator to show processing state
    status_indicator = gr.Markdown("Status: Ready")
    
    # Add a refresh button to manually reload data if needed
    refresh_btn = gr.Button("Refresh Data")
    
    def reload_data():
        global data_dict, sae_data_dict
        
        # Update status
        yield "Status: Reloading data..."
        
        # Reload data
        try:
            data_dict, sae_data_dict = load_all_data(image_root="./data/image", pkl_root=pkl_root)
            yield "Status: Data reloaded successfully!"
        except Exception as e:
            yield f"Status: Error reloading data - {str(e)}"
    
    refresh_btn.click(
        fn=reload_data,
        inputs=[],
        outputs=[status_indicator],
        queue=False
    )
    
    # Launch app with optimized settings
    demo.queue(concurrency_count=3, max_size=10)  # Balanced concurrency for better performance
    
    # Add startup message
    print("Starting visualization application...")
    print(f"Loaded {len(data_dict)} images and {len(sae_data_dict)} datasets")
    
    # Launch with proper error handling
    demo.launch(
        share=False,        # Don't share publicly
        debug=False,        # Disable debug mode for production
        show_error=True,    # Show errors for debugging
        quiet=False,        # Show startup messages
        favicon_path=None,  # Default favicon
        server_port=None,   # Use default port
        server_name=None,   # Bind to all interfaces
        height=None,        # Use default height
        width=None,         # Use default width
        enable_queue=True,  # Enable queue for better performance
    ) dictionary for dataset values
    sae_data_dict["mean_act_values"] = {}
    
    # Load dataset values in parallel
    def load_dataset_values(dataset):
        with gzip.open(f"./data/sae_data/mean_act_values_{dataset}.pkl.gz", "rb") as f:
            return dataset, pickle.load(f)
    
    with concurrent.futures.ThreadPoolExecutor(max_workers=3) as executor:
        futures = [
            executor.submit(load_dataset_values, dataset)
            for dataset in ["imagenet", "imagenet-sketch", "caltech101"]
        ]
        for future in concurrent.futures.as_completed(futures):
            dataset, data = future.result()
            sae_data_dict["mean_act_values"][dataset] = data
    
    return data_dict, sae_data_dict

# Cache activation data with LRU cache
@lru_cache(maxsize=32)
def preload_activation(image_name, model_name):
    """Preload and cache activation data for a specific image and model"""
    image_file = f"{pkl_root}/{model_name}/{image_name}.pkl.gz"
    
    try:
        with gzip.open(image_file, "rb") as f:
            return pickle.load(f)
    except Exception as e:
        print(f"Error loading {image_file}: {e}")
        return None

# Get activation with caching
def get_data(image_name, model_type):
    """Get activation data with caching for better performance"""
    cache_key = f"{image_name}_{model_type}"
    
    with data_lock:
        if cache_key not in activation_cache:
            activation_cache[cache_key] = preload_activation(image_name, model_type)
    
    return activation_cache[cache_key]

def get_activation_distribution(image_name, model_type):
    """Get activation distribution with noise filtering"""
    activation = get_data(image_name, model_type)
    
    if activation is None:
        # Return empty tensor if data loading failed
        return torch.zeros((GRID_NUM * GRID_NUM + 1, 1000))
    
    activation = activation[0]
    
    # Filter out noisy features
    noisy_features_indices = (
        (sae_data_dict["mean_acts"]["imagenet"] > 0.1).nonzero()[0].tolist()
    )
    activation[:, noisy_features_indices] = 0
    
    return activation

def get_grid_loc(evt, image):
    """Get grid location from click event"""
    # Get click coordinates
    x, y = evt._data["index"][0], evt._data["index"][1]
    
    cell_width = image.width // GRID_NUM
    cell_height = image.height // GRID_NUM
    
    grid_x = x // cell_width
    grid_y = y // cell_height
    return grid_x, grid_y, cell_width, cell_height

def highlight_grid(evt, image_name):
    """Highlight grid cell on click"""
    image = data_dict[image_name]["image"]
    grid_x, grid_y, cell_width, cell_height = get_grid_loc(evt, image)
    
    highlighted_image = image.copy()
    draw = ImageDraw.Draw(highlighted_image)
    box = [
        grid_x * cell_width,
        grid_y * cell_height,
        (grid_x + 1) * cell_width,
        (grid_y + 1) * cell_height,
    ]
    draw.rectangle(box, outline="red", width=3)
    
    return highlighted_image

def load_image(img_name):
    """Load image by name"""
    return data_dict[img_name]["image"]

# Optimized plotting with less annotations
def plot_activations(
    all_activation,
    tile_activations=None,
    grid_x=None,
    grid_y=None,
    top_k=5,
    colors=("blue", "cyan"),
    model_name="CLIP",
):
    """Plot activations with optimized rendering"""
    fig = go.Figure()
    
    def _add_scatter_with_annotation(fig, activations, model_name, color, label):
        # Only plot non-zero values to reduce points
        non_zero_indices = np.where(np.abs(activations) > 1e-5)[0]
        if len(non_zero_indices) == 0:
            # If all values are near zero, use full array
            non_zero_indices = np.arange(len(activations))
        
        fig.add_trace(
            go.Scatter(
                x=non_zero_indices,
                y=activations[non_zero_indices],
                mode="lines",
                name=label,
                line=dict(color=color, dash="solid"),
                showlegend=True,
            )
        )
        
        # Only annotate the top_k activations
        top_neurons = np.argsort(activations)[::-1][:top_k]
        for idx in top_neurons:
            fig.add_annotation(
                x=idx,
                y=activations[idx],
                text=str(idx),
                showarrow=True,
                arrowhead=2,
                ax=0,
                ay=-15,
                arrowcolor=color,
                opacity=0.7,
            )
        return fig
    
    label = f"{model_name.split('-')[-1]} Image-level"
    fig = _add_scatter_with_annotation(
        fig, all_activation, model_name, colors[0], label
    )
    
    if tile_activations is not None:
        label = f"{model_name.split('-')[-1]} Tile ({grid_x}, {grid_y})"
        fig = _add_scatter_with_annotation(
            fig, tile_activations, model_name, colors[1], label
        )
    
    # Optimize layout with minimal settings
    fig.update_layout(
        title="Activation Distribution",
        xaxis_title="SAE latent index",
        yaxis_title="Activation Value",
        template="plotly_white",
        legend=dict(orientation="h", yanchor="middle", y=0.5, xanchor="center", x=0.5),
    )
    
    return fig

def get_activations(evt, selected_image, model_name, colors):
    """Get activations for plotting"""
    activation = get_activation_distribution(selected_image, model_name)
    all_activation = activation.mean(0)
    
    tile_activations = None
    grid_x = None
    grid_y = None
    
    if evt is not None and evt._data is not None:
        image = data_dict[selected_image]["image"]
        grid_x, grid_y, cell_width, cell_height = get_grid_loc(evt, image)
        token_idx = grid_y * GRID_NUM + grid_x + 1
        # Ensure token_idx is within bounds
        if token_idx < activation.shape[0]:
            tile_activations = activation[token_idx]
    
    fig = plot_activations(
        all_activation,
        tile_activations,
        grid_x,
        grid_y,
        top_k=5,
        model_name=model_name,
        colors=colors,
    )
    
    return fig

# Cache plot results
@lru_cache(maxsize=16)
def plot_activation_distribution(evt_data, selected_image, model_name):
    """Plot activation distribution with caching"""
    # Convert event data to hashable format for caching
    if evt_data is not None:
        evt = type('obj', (object,), {'_data': evt_data})
    else:
        evt = None
    
    fig = make_subplots(
        rows=2,
        cols=1,
        shared_xaxes=True,
        subplot_titles=["CLIP Activation", f"{model_name} Activation"],
    )
    
    fig_clip = get_activations(
        evt, selected_image, "CLIP", colors=("#00b4d8", "#90e0ef")
    )
    fig_maple = get_activations(
        evt, selected_image, model_name, colors=("#ff5a5f", "#ffcad4")
    )
    
    def _attach_fig(fig, sub_fig, row, col, yref):
        for trace in sub_fig.data:
            fig.add_trace(trace, row=row, col=col)
        
        for annotation in sub_fig.layout.annotations:
            annotation.update(yref=yref)
            fig.add_annotation(annotation)
        return fig
    
    fig = _attach_fig(fig, fig_clip, row=1, col=1, yref="y1")
    fig = _attach_fig(fig, fig_maple, row=2, col=1, yref="y2")
    
    # Optimize layout with minimal settings
    fig.update_xaxes(title_text="SAE Latent Index", row=2, col=1)
    fig.update_xaxes(title_text="SAE Latent Index", row=1, col=1)
    fig.update_yaxes(title_text="Activation Value", row=1, col=1)
    fig.update_yaxes(title_text="Activation Value", row=2, col=1)
    fig.update_layout(
        template="plotly_white",
        showlegend=True,
        legend=dict(orientation="h", yanchor="bottom", y=-0.2, xanchor="center", x=0.5),
        margin=dict(l=20, r=20, t=40, b=20),
    )
    
    return fig

# Cache segmentation masks
@lru_cache(maxsize=32)
def get_segmask(selected_image, slider_value, model_type):
    """Generate segmentation mask with caching"""
    try:
        # Check if image exists
        if selected_image not in data_dict:
            print(f"Image {selected_image} not found in data dictionary")
            # Return blank mask with IMAGE_SIZE dimensions
            return np.zeros((IMAGE_SIZE, IMAGE_SIZE, 4), dtype=np.uint8)
        
        # Use cache if available
        cache_key = f"{selected_image}_{slider_value}_{model_type}"
        with data_lock:
            if cache_key in segmask_cache:
                return segmask_cache[cache_key]
        
        # Get image
        image = data_dict[selected_image]["image"]
        
        # Get activation data
        sae_act = get_data(selected_image, model_type)
        
        if sae_act is None:
            # Return blank mask if data loading failed
            return np.zeros((image.height, image.width, 4), dtype=np.uint8)
        
        # Handle array shape issues
        try:
            # Check array shape and dimensions
            if isinstance(sae_act, tuple) and len(sae_act) > 0:
                # First element of tuple
                act_data = sae_act[0]
            else:
                # Direct array
                act_data = sae_act
            
            # Check if slider_value is within bounds
            if slider_value >= act_data.shape[1]:
                print(f"Slider value {slider_value} out of bounds for activation shape {act_data.shape}")
                return np.zeros((image.height, image.width, 4), dtype=np.uint8)
            
            # Get activation for specific latent
            temp = act_data[:, slider_value]
            
            # Skip first token (CLS token) and reshape to grid
            if len(temp) > 1:  # Ensure we have enough tokens
                mask = torch.Tensor(temp[1:].reshape(GRID_NUM, GRID_NUM)).view(1, 1, GRID_NUM, GRID_NUM)
                
                # Upsample to image dimensions
                mask = torch.nn.functional.interpolate(mask, (image.height, image.width))[0][0].numpy()
                
                # Normalize mask values between 0 and 1
                mask_min, mask_max = mask.min(), mask.max()
                if mask_max > mask_min:  # Avoid division by zero
                    mask = (mask - mask_min) / (mask_max - mask_min)
                else:
                    mask = np.zeros_like(mask)
            else:
                # Not enough tokens
                print(f"Not enough tokens in activation data: {len(temp)}")
                return np.zeros((image.height, image.width, 4), dtype=np.uint8)
                
        except Exception as e:
            print(f"Error processing activation data: {e}")
            print(f"Shape info - sae_act: {type(sae_act)}, slider_value: {slider_value}")
            return np.zeros((image.height, image.width, 4), dtype=np.uint8)
        
        # Create RGBA overlay
        try:
            # Set base opacity for darkened areas
            base_opacity = 30
            
            # Convert image to numpy array
            image_array = np.array(image)
            
            # Handle grayscale images
            if len(image_array.shape) == 2:
                # Convert grayscale to RGB
                image_array = np.stack([image_array] * 3, axis=-1)
            elif image_array.shape[2] == 4:
                # Use only RGB channels
                image_array = image_array[..., :3]
            
            # Create overlay
            rgba_overlay = np.zeros((mask.shape[0], mask.shape[1], 4), dtype=np.uint8)
            rgba_overlay[..., :3] = image_array
            
            # Use vectorized operations for better performance
            darkened_image = (image_array * (base_opacity / 255)).astype(np.uint8)
            
            # Create mask for darkened areas
            mask_threshold = 0.1  # Adjust threshold if needed
            mask_zero = mask < mask_threshold
            
            # Apply darkening only to low-activation areas
            rgba_overlay[mask_zero, :3] = darkened_image[mask_zero]
            
            # Set alpha channel
            rgba_overlay[..., 3] = 255  # Fully opaque
            
            # Cache result for future use
            with data_lock:
                segmask_cache[cache_key] = rgba_overlay
            
            return rgba_overlay
            
        except Exception as e:
            print(f"Error creating overlay: {e}")
            return np.zeros((image.height, image.width, 4), dtype=np.uint8)
    
    except Exception as e:
        print(f"Unexpected error in get_segmask: {e}")
        # Return a blank image of standard size
        return np.zeros((IMAGE_SIZE, IMAGE_SIZE, 4), dtype=np.uint8)

# Cache top images
@lru_cache(maxsize=32)
def get_top_images(slider_value, toggle_btn):
    """Get top images with caching"""
    cache_key = f"{slider_value}_{toggle_btn}"
    
    if cache_key in top_images_cache:
        return top_images_cache[cache_key]
    
    def _get_images(dataset_path):
        top_image_paths = [
            os.path.join(dataset_path, "imagenet", f"{slider_value}.jpg"),
            os.path.join(dataset_path, "imagenet-sketch", f"{slider_value}.jpg"),
            os.path.join(dataset_path, "caltech101", f"{slider_value}.jpg"),
        ]
        
        top_images = []
        for path in top_image_paths:
            if os.path.exists(path):
                top_images.append(Image.open(path))
            else:
                top_images.append(Image.new("RGB", (256, 256), (255, 255, 255)))
        
        return top_images
    
    if toggle_btn:
        top_images = _get_images("./data/top_images_masked")
    else:
        top_images = _get_images("./data/top_images")
    
    # Cache result
    top_images_cache[cache_key] = top_images
    
    return top_images

def show_activation_heatmap(selected_image, slider_value, model_type, toggle_btn=False):
    """Show activation heatmap with optimized processing"""
    try:
        # Parse slider value safely
        if not slider_value:
            # Fallback to the first option if no slider value
            radio_options = get_init_radio_options(selected_image, model_type)
            if not radio_options:
                # Create placeholder data if no options available
                return (
                    np.zeros((IMAGE_SIZE, IMAGE_SIZE, 4), dtype=np.uint8),
                    [Image.new("RGB", (256, 256), (255, 255, 255)) for _ in range(3)],
                    ["#### Activation values: No data available"] * 3
                )
            slider_value = radio_options[0]
        
        # Extract the integer value
        try:
            slider_value_int = int(slider_value.split("-")[-1])
        except (ValueError, IndexError):
            print(f"Error parsing slider value: {slider_value}")
            slider_value_int = 0
        
        # Process in parallel with thread pool and add timeout
        results = []
        with concurrent.futures.ThreadPoolExecutor(max_workers=2) as executor:
            # Start both tasks
            segmask_future = executor.submit(get_segmask, selected_image, slider_value_int, model_type)
            top_images_future = executor.submit(get_top_images, slider_value_int, toggle_btn)
            
            # Get results with timeout to prevent hanging
            try:
                rgba_overlay = segmask_future.result(timeout=5)
            except (concurrent.futures.TimeoutError, Exception) as e:
                print(f"Error or timeout generating segmentation mask: {e}")
                rgba_overlay = np.zeros((IMAGE_SIZE, IMAGE_SIZE, 4), dtype=np.uint8)
            
            try:
                top_images = top_images_future.result(timeout=5)
            except (concurrent.futures.TimeoutError, Exception) as e:
                print(f"Error or timeout getting top images: {e}")
                top_images = [Image.new("RGB", (256, 256), (255, 255, 255)) for _ in range(3)]
        
        # Prepare activation values with error handling
        act_values = []
        for dataset in ["imagenet", "imagenet-sketch", "caltech101"]:
            try:
                if dataset in sae_data_dict["mean_act_values"]:
                    values = sae_data_dict["mean_act_values"][dataset]
                    if slider_value_int < values.shape[0]:
                        act_value = values[slider_value_int, :5]
                        act_value = [str(round(value, 3)) for value in act_value]
                        act_value = " | ".join(act_value)
                        out = f"#### Activation values: {act_value}"
                    else:
                        out = f"#### Activation values: Index out of range"
                else:
                    out = f"#### Activation values: Dataset not available"
            except Exception as e:
                print(f"Error getting activation values for {dataset}: {e}")
                out = f"#### Activation values: Error retrieving data"
            
            act_values.append(out)
        
        return rgba_overlay, top_images, act_values
    
    except Exception as e:
        print(f"Error in show_activation_heatmap: {e}")
        # Return placeholder data in case of error
        return (
            np.zeros((IMAGE_SIZE, IMAGE_SIZE, 4), dtype=np.uint8),
            [Image.new("RGB", (256, 256), (255, 255, 255)) for _ in range(3)],
            ["#### Activation values: Error occurred"] * 3
        )

def show_activation_heatmap_clip(selected_image, slider_value, toggle_btn):
    """Show CLIP activation heatmap"""
    rgba_overlay, top_images, act_values = show_activation_heatmap(
        selected_image, slider_value, "CLIP", toggle_btn
    )
    
    return (
        rgba_overlay,
        top_images[0],
        top_images[1],
        top_images[2],
        act_values[0],
        act_values[1],
        act_values[2],
    )

def show_activation_heatmap_maple(selected_image, slider_value, model_name):
    """Show MaPLE activation heatmap"""
    slider_value_int = int(slider_value.split("-")[-1])
    rgba_overlay = get_segmask(selected_image, slider_value_int, model_name)
    
    return rgba_overlay

# Optimize radio options generation
def get_init_radio_options(selected_image, model_name):
    """Get initial radio options with optimized processing"""
    clip_neuron_dict = {}
    maple_neuron_dict = {}
    
    def _get_top_actvation(selected_image, model_name, neuron_dict, top_k=5):
        activations = get_activation_distribution(selected_image, model_name).mean(0)
        top_neurons = list(np.argsort(activations)[::-1][:top_k])
        for top_neuron in top_neurons:
            neuron_dict[top_neuron] = activations[top_neuron]
        sorted_dict = dict(
            sorted(neuron_dict.items(), key=lambda item: item[1], reverse=True)
        )
        return sorted_dict
    
    # Process in parallel
    with concurrent.futures.ThreadPoolExecutor(max_workers=2) as executor:
        future_clip = executor.submit(_get_top_actvation, selected_image, "CLIP", {})
        future_maple = executor.submit(_get_top_actvation, selected_image, model_name, {})
        
        clip_neuron_dict = future_clip.result()
        maple_neuron_dict = future_maple.result()
    
    radio_choices = get_radio_names(clip_neuron_dict, maple_neuron_dict)
    
    return radio_choices

def get_radio_names(clip_neuron_dict, maple_neuron_dict):
    """Get radio button names based on neuron activations"""
    clip_keys = list(clip_neuron_dict.keys())
    maple_keys = list(maple_neuron_dict.keys())
    
    # Use set operations for better performance
    common_keys = list(set(clip_keys).intersection(set(maple_keys)))
    clip_only_keys = list(set(clip_keys) - set(maple_keys))
    maple_only_keys = list(set(maple_keys) - set(clip_keys))
    
    # Sort keys by activation values
    common_keys.sort(
        key=lambda x: max(clip_neuron_dict.get(x, 0), maple_neuron_dict.get(x, 0)), 
        reverse=True
    )
    clip_only_keys.sort(key=lambda x: clip_neuron_dict.get(x, 0), reverse=True)
    maple_only_keys.sort(key=lambda x: maple_neuron_dict.get(x, 0), reverse=True)
    
    # Limit number of choices to improve performance
    out = []
    out.extend([f"common-{i}" for i in common_keys[:5]])
    out.extend([f"CLIP-{i}" for i in clip_only_keys[:5]])
    out.extend([f"MaPLE-{i}" for i in maple_only_keys[:5]])
    
    return out

def update_radio_options(evt, selected_image, model_name):
    """Update radio options based on user interaction"""
    def _get_top_actvation(evt, selected_image, model_name):
        neuron_dict = {}
        all_activation = get_activation_distribution(selected_image, model_name)
        image_activation = all_activation.mean(0)
        
        # Get top activations from image-level
        top_neurons = list(np.argsort(image_activation)[::-1][:5])
        for top_neuron in top_neurons:
            neuron_dict[top_neuron] = image_activation[top_neuron]
        
        # Get top activations from tile-level if available
        if evt is not None and evt._data is not None and isinstance(evt._data["index"], list):
            image = data_dict[selected_image]["image"]
            grid_x, grid_y, cell_width, cell_height = get_grid_loc(evt, image)
            token_idx = grid_y * GRID_NUM + grid_x + 1
            
            # Ensure token_idx is within bounds
            if token_idx < all_activation.shape[0]:
                tile_activations = all_activation[token_idx]
                top_tile_neurons = list(np.argsort(tile_activations)[::-1][:5])
                for top_neuron in top_tile_neurons:
                    neuron_dict[top_neuron] = max(
                        neuron_dict.get(top_neuron, 0), 
                        tile_activations[top_neuron]
                    )
        
        # Sort by activation value
        return dict(sorted(neuron_dict.items(), key=lambda item: item[1], reverse=True))
    
    # Process in parallel
    with concurrent.futures.ThreadPoolExecutor(max_workers=2) as executor:
        future_clip = executor.submit(_get_top_actvation, evt, selected_image, "CLIP")
        future_maple = executor.submit(_get_top_actvation, evt, selected_image, model_name)
        
        clip_neuron_dict = future_clip.result()
        maple_neuron_dict = future_maple.result()
    
    # Get radio choices
    radio_choices = get_radio_names(clip_neuron_dict, maple_neuron_dict)
    
    # Create radio component
    radio = gr.Radio(
        choices=radio_choices, 
        label="Top activating SAE latent", 
        value=radio_choices[0] if radio_choices else None
    )
    
    return radio

def update_markdown(option_value):
    """Update markdown text"""
    latent_idx = int(option_value.split("-")[-1])
    out_1 = f"## Segmentation mask for the selected SAE latent - {latent_idx}"
    out_2 = f"## Top reference images for the selected SAE latent - {latent_idx}"
    return out_1, out_2

def update_all(selected_image, slider_value, toggle_btn, model_name):
    """Update all UI components in optimized way"""
    # Use a thread pool to parallelize operations
    with concurrent.futures.ThreadPoolExecutor(max_workers=2) as executor:
        # Start both tasks
        clip_future = executor.submit(
            show_activation_heatmap_clip, 
            selected_image, 
            slider_value, 
            toggle_btn
        )
        
        maple_future = executor.submit(
            show_activation_heatmap_maple,
            selected_image,
            slider_value,
            model_name
        )
        
        # Get results
        (
            seg_mask_display,
            top_image_1,
            top_image_2,
            top_image_3,
            act_value_1,
            act_value_2,
            act_value_3,
        ) = clip_future.result()
        
        seg_mask_display_maple = maple_future.result()
    
    # Update markdown
    markdown_display, markdown_display_2 = update_markdown(slider_value)
    
    return (
        seg_mask_display,
        seg_mask_display_maple,
        top_image_1,
        top_image_2,
        top_image_3,
        act_value_1,
        act_value_2,
        act_value_3,
        markdown_display,
        markdown_display_2,
    )

# Initialize data - load at startup
data_dict, sae_data_dict = load_all_data(image_root="./data/image", pkl_root=pkl_root)
default_image_name = "christmas-imagenet"

# Define UI with lazy loading
with gr.Blocks(
    theme=gr.themes.Citrus(),
    css="""
    .image-row .gr-image { margin: 0 !important; padding: 0 !important; }
    .image-row img { width: auto; height: 50px; } /* Set a uniform height for all images */
    """,
) as demo:
    with gr.Row():
        with gr.Column():
            # Left View: Image selection and click handling
            gr.Markdown("## Select input image and patch on the image")
            image_selector = gr.Dropdown(
                choices=list(data_dict.keys()),
                value=default_image_name,
                label="Select Image",
            )
            image_display = gr.Image(
                value=load_image(default_image_name),
                type="pil",
                interactive=True,
            )
            
            # Update image display when a new image is selected (with debounce)
            image_selector.change(
                fn=load_image,
                inputs=image_selector,
                outputs=image_display,
                _js="""
                function(img_name) {
                    // Simple debounce
                    clearTimeout(window._imageSelectTimeout);
                    return new Promise((resolve) => {
                        window._imageSelectTimeout = setTimeout(() => {
                            resolve(img_name);
                        }, 100);
                    });
                }
                """
            )
            
            # Handle grid highlighting
            image_display.select(
                fn=highlight_grid, 
                inputs=[image_selector], 
                outputs=[image_display]
            )
        
        with gr.Column():
            gr.Markdown("## SAE latent activations of CLIP and MaPLE")
            model_options = [f"MaPLE-{dataset_name}" for dataset_name in DATASET_LIST]
            model_selector = gr.Dropdown(
                choices=model_options,
                value=model_options[0],
                label="Select adapted model (MaPLe)",
            )
            
            # Initialize with a placeholder plot to avoid delays
            neuron_plot = gr.Plot(
                label="Neuron Activation", 
                show_label=False
            )
            
            # Add event handlers with proper data flow
            def update_plot(evt, selected_image, model_name):
                if hasattr(evt, '_data') and evt._data is not None:
                    return plot_activation_distribution(
                        tuple(map(tuple, evt._data.get('index', []))), 
                        selected_image, 
                        model_name
                    )
                return plot_activation_distribution(None, selected_image, model_name)
            
            # Load initial plot after UI is rendered
            gr.on(
                [image_selector.change, model_selector.change],
                fn=lambda img, model: plot_activation_distribution(None, img, model),
                inputs=[image_selector, model_selector],
                outputs=neuron_plot,
            )
            
            # Update plot on image click
            image_display.select(
                fn=update_plot,
                inputs=[image_selector, model_selector],
                outputs=neuron_plot,
            )

    with gr.Row():
        with gr.Column():
            # Initialize radio options
            radio_names = gr.State(value=get_init_radio_options(default_image_name, model_options[0]))
            
            # Initialize markdown displays
            markdown_display = gr.Markdown(f"## Segmentation mask for the selected SAE latent")
            
            # Initialize segmentation displays
            gr.Markdown("### Localize SAE latent activation using CLIP")
            seg_mask_display = gr.Image(type="pil", show_label=False)
            
            gr.Markdown("### Localize SAE latent activation using MaPLE")
            seg_mask_display_maple = gr.Image(type="pil", show_label=False)
        
        with gr.Column():
            gr.Markdown("## Top activating SAE latent index")
            
            # Initialize radio component
            radio_choices = gr.Radio(
                label="Top activating SAE latent",
                interactive=True,
            )
            
            # Initialize as soon as UI loads
            gr.on(
                gr.Blocks.load,
                fn=lambda: gr.Radio.update(
                    choices=get_init_radio_options(default_image_name, model_options[0]),
                    value=get_init_radio_options(default_image_name, model_options[0])[0]
                ),
                outputs=radio_choices
            )
            
            toggle_btn = gr.Checkbox(label="Show segmentation mask", value=False)
            
            markdown_display_2 = gr.Markdown(f"## Top reference images for the selected SAE latent")
            
            # Initialize image displays
            gr.Markdown("### ImageNet")
            top_image_1 = gr.Image(type="pil", label="ImageNet", show_label=False)
            act_value_1 = gr.Markdown()
            
            gr.Markdown("### ImageNet-Sketch")
            top_image_2 = gr.Image(type="pil", label="ImageNet-Sketch", show_label=False)
            act_value_2 = gr.Markdown()
            
            gr.Markdown("### Caltech101")
            top_image_3 = gr.Image(type="pil", label="Caltech101", show_label=False)
            act_value_3 = gr.Markdown()
            
            # Update radio options on image interaction
            image_display.select(
                fn=update_radio_options,
                inputs=[image_selector, model_selector],
                outputs=radio_choices,
            )
            
            # Update radio options on model change
            model_selector.change(
                fn=update_radio_options,
                inputs=[image_selector, model_selector],
                outputs=radio_choices,
            )
            
            # Update radio options on image selection
            image_selector.change(
                fn=update_radio_options,
                inputs=[image_selector, model_selector],
                outputs=radio_choices,
            )
        
        # Initialize