File size: 7,316 Bytes
374dd02
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174

import json
import os
import re

from dotenv import load_dotenv
from langchain_core.messages import (AIMessage, HumanMessage, SystemMessage,
                                     ToolMessage)
from langchain_huggingface import (ChatHuggingFace, HuggingFaceEmbeddings,
                                   HuggingFaceEndpoint)
from langgraph.graph import START, MessagesState, StateGraph
from langgraph.prebuilt import ToolNode, tools_condition

from tools import (absolute, add, analyze_csv_file, analyze_excel_file,
                   arvix_search, audio_transcription, compound_interest,
                   convert_temperature, divide, exponential,
                   extract_text_from_image, factorial, floor_divide,
                   get_current_time_in_timezone, greatest_common_divisor,
                   is_prime, least_common_multiple, logarithm, modulus,
                   multiply, percentage_calculator, power, python_code_parser,
                   reverse_sentence, roman_calculator_converter, square_root,
                   subtract, web_content_extract, web_search, wiki_search)

# Load Constants
load_dotenv()
HUGGINGFACEHUB_API_TOKEN = os.getenv("HUGGINGFACEHUB_API_TOKEN")
GEMINI_API_KEY = os.getenv("GEMINI_API_KEY")

tools = [
    multiply, add, subtract, power, divide, modulus,
    square_root, floor_divide, absolute, logarithm,
    exponential, web_search, roman_calculator_converter,
    get_current_time_in_timezone, compound_interest,
    convert_temperature, factorial, greatest_common_divisor,
    is_prime, least_common_multiple, percentage_calculator,
    wiki_search, analyze_excel_file, arvix_search,
    audio_transcription, python_code_parser, analyze_csv_file,
    extract_text_from_image, reverse_sentence, web_content_extract,
]

# Load system prompt
system_prompt = """
You are a general AI assistant. I will ask you a question.
Report your thoughts, and finish your answer with only the answer, no extra text, no prefix, and no explanation.
Your answer should be a number OR as few words as possible OR a comma separated list of numbers and/or strings.
If you are asked for a number, don't use a comma to write your number, nor use units such as $ or percent sign unless specified otherwise.
If you are asked for a string, don't use articles, neither abbreviations (e.g. for cities), and write the digits in plain text unless specified otherwise.
If you are asked for a comma separated list, apply the above rules depending on whether the element to be put in the list is a number or a string.
Format your output as: [{"task_id": ..., "submitted_answer": ...}]
Do NOT include the format string or any JSON inside the submitted_answer field. Only output a single flat list as: [{"task_id": ..., "submitted_answer": ...}]
"""

# System message
sys_msg = SystemMessage(content=system_prompt)


def build_graph():
    """Build the graph"""
    # First create the HuggingFaceEndpoint
    llm_endpoint = HuggingFaceEndpoint(
        repo_id="mistralai/Mistral-7B-Instruct-v0.2",
        huggingfacehub_api_token=HUGGINGFACEHUB_API_TOKEN,
        #api_key=GEMINI_API_KEY,
        temperature=0.1,
        max_new_tokens=1024,
        timeout=60,
    )

    # Then wrap it with ChatHuggingFace to get chat model functionality
    llm = ChatHuggingFace(llm=llm_endpoint)

    # Bind tools to LLM
    llm_with_tools = llm.bind_tools(tools)

    # --- Nodes ---
    def extract_answer(llm_output):
        # Try to parse as JSON if possible
        try:
            # If the LLM output is a JSON list, extract the answer
            parsed = json.loads(llm_output.strip().split('\n')[0])
            if isinstance(parsed, list) and isinstance(parsed[0], dict) and "submitted_answer" in parsed[0]:
                return parsed[0]["submitted_answer"]
        except Exception:
            pass
        # Otherwise, just return the first line (before any explanation)
        return llm_output.strip().split('\n')[0]

    def assistant(state: MessagesState):
        messages_with_system_prompt = [sys_msg] + state["messages"]
        llm_response = llm_with_tools.invoke(messages_with_system_prompt)
        answer_text = extract_answer(llm_response.content)
        task_id = str(state.get("task_id", "1"))  # Ensure task_id is a string
        formatted = [{"task_id": task_id, "submitted_answer": answer_text}]
        return {"messages": [AIMessage(content=json.dumps(formatted, ensure_ascii=False))]}

    # --- Graph Definition ---
    builder = StateGraph(MessagesState)
    builder.add_node("assistant", assistant)
    builder.add_node("tools", ToolNode(tools))

    builder.add_edge(START, "assistant")
    builder.add_conditional_edges("assistant", tools_condition)
    builder.add_edge("tools", "assistant")

    # Compile graph
    return builder.compile()


def is_valid_agent_output(output):
    """
    Checks if the output matches the required format:
    Answers (answers): [{"task_id": ..., "submitted_answer": ...}]
    """
    # Basic regex to check the format
    pattern = r'^Answers \(answers\): \[(\{.*\})\]$'
    match = re.match(pattern, output.strip())
    if not match:
        return False

    # Try to parse the JSON part
    try:
        answers_list = json.loads(f'[{match.group(1)}]')
        # Check required keys
        for ans in answers_list:
            if not isinstance(ans, dict):
                return False
            if "task_id" not in ans or "submitted_answer" not in ans:
                return False
        return True
    except Exception:
        return False


def extract_flat_answer(output):
    # Try to find the innermost Answers (answers): [{...}]
    pattern = r'Answers \(answers\): \[(\{.*?\})\]'
    matches = re.findall(pattern, output)
    if matches:
        # Use the last match (innermost)
        try:
            answers_list = json.loads(f'[{matches[-1]}]')
            if isinstance(answers_list, list) and "task_id" in answers_list[0] and "submitted_answer" in answers_list[0]:
                return f'Answers (answers): [{matches[-1]}]'
        except Exception:
            pass
    return output  # fallback

# test
if __name__ == "__main__":
    question = "When was a picture of St. Thomas Aquinas first added to the Wikipedia page on the Principle of double effect?"
    # Build the graph
    graph = build_graph()
    # Run the graph
    messages = [HumanMessage(content=question)]
    # The initial state for the graph
    initial_state = {"messages": messages, "task_id": "test123"}

    # Invoke the graph stream to see the steps
    for s in graph.stream(initial_state, stream_mode="values"):
        message = s["messages"][-1]
        if isinstance(message, ToolMessage):
            print("---RETRIEVED CONTEXT---")
            print(message.content)
            print("-----------------------")
        else:
            output = message.content  # This is a string
            try:
                parsed = json.loads(output)
                if isinstance(parsed, list) and "task_id" in parsed[0] and "submitted_answer" in parsed[0]:
                    print("✅ Output is in the correct format!")
                else:
                    print("❌ Output is NOT in the correct format!")
            except Exception as e:
                print("❌ Output is NOT in the correct format!", e)