Spaces:
Sleeping
Sleeping
File size: 8,117 Bytes
3dd7df6 fed29da 3dd7df6 fed29da 3dd7df6 fed29da 3dd7df6 fed29da 3dd7df6 fed29da 3dd7df6 fed29da 3dd7df6 fed29da 3dd7df6 fed29da 3dd7df6 fed29da 3dd7df6 fed29da 3dd7df6 fed29da 3dd7df6 fed29da 3dd7df6 fed29da 3dd7df6 fed29da 3dd7df6 fed29da 3dd7df6 fed29da 3dd7df6 fed29da 3dd7df6 fed29da 3dd7df6 fed29da 3dd7df6 fed29da 3dd7df6 fed29da 3dd7df6 fed29da 3dd7df6 fed29da 3dd7df6 fed29da 3dd7df6 fed29da 3dd7df6 fed29da 3dd7df6 fed29da 3dd7df6 fed29da 3dd7df6 fed29da 3dd7df6 fed29da 3dd7df6 fed29da 3dd7df6 fed29da 3dd7df6 fed29da 3dd7df6 fed29da 3dd7df6 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 |
import os
import gradio as gr
from typing import List, Dict, Tuple, Optional
# Azure AI Agents SDK (API key auth)
from azure.core.credentials import AzureKeyCredential
from azure.ai.agents import AgentsClient
from azure.ai.agents.models import (
FilePurpose,
CodeInterpreterTool,
ListSortOrder,
MessageRole,
)
# ----------------- Core Agent Helpers -----------------
def init_agent(
endpoint: str,
api_key: str,
model_deployment: str,
data_file_path: Optional[str],
) -> dict:
"""
Initialize an Azure AI Agent with an optional data file for the Code Interpreter.
Returns a session dict containing client, agent_id, thread_id, etc.
"""
if not endpoint or not api_key or not model_deployment:
raise ValueError("Please provide endpoint, key, and model deployment name.")
client = AgentsClient(
endpoint=endpoint.strip(),
credential=AzureKeyCredential(api_key.strip()),
)
# Optionally upload file and bind it to a Code Interpreter tool
code_interpreter = None
if data_file_path:
uploaded = client.files.upload_and_poll(
file_path=data_file_path,
purpose=FilePurpose.AGENTS
)
code_interpreter = CodeInterpreterTool(file_ids=[uploaded.id])
# Create the agent (attach tools only if present)
agent = client.create_agent(
model=model_deployment.strip(),
name="data-agent",
instructions=(
"You are an AI agent that analyzes the uploaded data when present. "
"Use Python via the Code Interpreter to compute statistical metrics "
"or produce text-based charts when asked. If no file is provided, "
"proceed with normal reasoning."
),
tools=(code_interpreter.definitions if code_interpreter else None),
tool_resources=(code_interpreter.resources if code_interpreter else None),
)
# Create a thread for the conversation
thread = client.threads.create()
# Session we keep in Gradio state
return {
"endpoint": endpoint.strip(),
"api_key": api_key.strip(),
"model": model_deployment.strip(),
"client": client,
"agent_id": agent.id,
"thread_id": thread.id,
"has_file": bool(data_file_path),
"uploaded_path": data_file_path,
}
def send_to_agent(user_msg: str, session: dict) -> Tuple[str, str]:
"""
Send a message to the existing agent thread and return:
- agent_reply (str)
- history_str (str) readable, chronological log
"""
if not session or "client" not in session:
raise ValueError("Agent is not initialized. Click 'Connect & Prepare' first.")
client: AgentsClient = session["client"]
agent_id = session["agent_id"]
thread_id = session["thread_id"]
# Add user message
client.messages.create(
thread_id=thread_id,
role="user",
content=user_msg,
)
# Run and wait for completion
run = client.runs.create_and_process(thread_id=thread_id, agent_id=agent_id)
if getattr(run, "status", None) == "failed":
last_error = getattr(run, "last_error", "Unknown error")
return f"Run failed: {last_error}", ""
# Get last agent message text
last_msg = client.messages.get_last_message_text_by_role(
thread_id=thread_id,
role=MessageRole.AGENT,
)
agent_reply = last_msg.text.value if last_msg else "(No reply text found.)"
# Build readable history (chronological)
history_lines = []
messages = client.messages.list(thread_id=thread_id, order=ListSortOrder.ASCENDING)
for m in messages:
if m.text_messages:
last_text = m.text_messages[-1].text.value
history_lines.append(f"{m.role}: {last_text}")
history_str = "\n\n".join(history_lines)
return agent_reply, history_str
def teardown(session: dict) -> str:
"""
Delete the agent to reduce costs. (Threads are retained by service.)
"""
if not session:
return "Nothing to clean up."
messages = []
try:
client: AgentsClient = session.get("client")
agent_id = session.get("agent_id")
if client and agent_id:
client.delete_agent(agent_id)
messages.append("Deleted agent.")
except Exception as e:
messages.append(f"Cleanup warning: {e}")
return " ".join(messages) if messages else "Cleanup complete."
# ----------------- Gradio App -----------------
with gr.Blocks(title="Azure AI Agent (Endpoint+Key) — Gradio") as demo:
gr.Markdown(
"## Azure AI Agent (Code Interpreter Ready)\n"
"Enter your **Project Endpoint** and **Key**, set your **Model Deployment** (e.g., `gpt-4o`), "
"optionally upload a data file (TXT/CSV), then chat.\n"
"Click **Connect & Prepare Agent** once, then send prompts."
)
with gr.Row():
endpoint = gr.Textbox(label="Project Endpoint", placeholder="https://<your-project-endpoint>")
api_key = gr.Textbox(label="Project Key", placeholder="paste your key", type="password")
with gr.Row():
model = gr.Textbox(label="Model Deployment Name", value="gpt-4o")
data_file = gr.File(
label="Optional data file (txt/csv) for Code Interpreter",
file_types=[".txt", ".csv"],
type="filepath" # returns a filesystem path string
)
session_state = gr.State(value=None)
connect_btn = gr.Button("🔌 Connect & Prepare Agent", variant="primary")
connect_status = gr.Markdown("")
# Use messages-format chatbot
with gr.Row():
chatbot = gr.Chatbot(
label="Conversation",
height=420,
type="messages", # openai-style dicts: {"role": "...", "content": "..."}
)
user_input = gr.Textbox(label="Your message", placeholder="Ask a question or request a chart…")
with gr.Row():
send_btn = gr.Button("Send ▶")
cleanup_btn = gr.Button("Delete Agent & Cleanup 🧹")
history = gr.Textbox(label="Conversation Log (chronological)", lines=12)
# --------- Callbacks ---------
def on_connect(ep, key, mdl, fpath):
try:
sess = init_agent(ep, key, mdl, fpath)
return sess, "✅ Connected. Agent and thread are ready."
except Exception as e:
return None, f"❌ Connection error: {e}"
connect_btn.click(
fn=on_connect,
inputs=[endpoint, api_key, model, data_file],
outputs=[session_state, connect_status],
)
def on_send(msg: str, session: dict, chat_msgs: List[Dict[str, str]]):
"""
chat_msgs is a list of dicts with 'role' and 'content' (messages format).
We append the user's message and the assistant's reply in that same format.
"""
if not msg:
return gr.update(), gr.update(), gr.update(value="Please enter a message.")
try:
agent_reply, log = send_to_agent(msg, session)
# Build updated chat message list
chat_msgs = (chat_msgs or []) + [
{"role": "user", "content": msg},
{"role": "assistant", "content": agent_reply},
]
return chat_msgs, "", gr.update(value=log) # clear user input after send
except Exception as e:
# Keep chat as-is, show error in history box
return chat_msgs, msg, gr.update(value=f"❌ Error: {e}")
send_btn.click(
fn=on_send,
inputs=[user_input, session_state, chatbot],
outputs=[chatbot, user_input, history],
)
def on_cleanup(session):
try:
msg = teardown(session)
return None, f"🧹 {msg}"
except Exception as e:
return session, f"⚠️ Cleanup error: {e}"
cleanup_btn.click(
fn=on_cleanup,
inputs=[session_state],
outputs=[session_state, connect_status],
)
if __name__ == "__main__":
# If deploying to spaces/containers you can set server_name/port via env if needed
demo.launch()
|