File size: 8,117 Bytes
3dd7df6
 
fed29da
3dd7df6
fed29da
3dd7df6
 
 
 
 
 
 
 
 
 
fed29da
 
 
 
 
 
 
 
3dd7df6
fed29da
 
3dd7df6
 
 
 
 
 
 
 
 
fed29da
 
 
 
 
 
3dd7df6
fed29da
 
 
 
 
 
 
 
 
 
 
 
 
 
 
3dd7df6
fed29da
 
3dd7df6
fed29da
 
3dd7df6
 
 
 
 
 
fed29da
 
3dd7df6
 
 
fed29da
3dd7df6
fed29da
 
 
3dd7df6
 
 
 
 
 
 
 
fed29da
3dd7df6
 
 
 
 
 
fed29da
3dd7df6
 
 
 
 
fed29da
3dd7df6
 
 
 
 
 
fed29da
3dd7df6
 
 
 
 
 
 
 
 
 
 
fed29da
3dd7df6
fed29da
3dd7df6
 
 
 
fed29da
3dd7df6
 
fed29da
 
 
 
3dd7df6
fed29da
3dd7df6
fed29da
3dd7df6
 
fed29da
3dd7df6
 
 
 
fed29da
 
 
3dd7df6
 
 
 
 
 
 
 
fed29da
 
 
 
 
3dd7df6
 
 
 
 
 
fed29da
3dd7df6
fed29da
 
 
 
 
 
3dd7df6
 
 
 
 
 
 
fed29da
 
 
3dd7df6
fed29da
3dd7df6
 
 
 
 
 
 
 
 
 
fed29da
 
 
 
 
3dd7df6
fed29da
 
3dd7df6
fed29da
 
 
 
 
 
 
 
 
3dd7df6
fed29da
 
3dd7df6
 
 
 
fed29da
3dd7df6
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
fed29da
3dd7df6
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
import os
import gradio as gr
from typing import List, Dict, Tuple, Optional

# Azure AI Agents SDK (API key auth)
from azure.core.credentials import AzureKeyCredential
from azure.ai.agents import AgentsClient
from azure.ai.agents.models import (
    FilePurpose,
    CodeInterpreterTool,
    ListSortOrder,
    MessageRole,
)


# ----------------- Core Agent Helpers -----------------

def init_agent(
    endpoint: str,
    api_key: str,
    model_deployment: str,
    data_file_path: Optional[str],
) -> dict:
    """
    Initialize an Azure AI Agent with an optional data file for the Code Interpreter.
    Returns a session dict containing client, agent_id, thread_id, etc.
    """
    if not endpoint or not api_key or not model_deployment:
        raise ValueError("Please provide endpoint, key, and model deployment name.")

    client = AgentsClient(
        endpoint=endpoint.strip(),
        credential=AzureKeyCredential(api_key.strip()),
    )

    # Optionally upload file and bind it to a Code Interpreter tool
    code_interpreter = None
    if data_file_path:
        uploaded = client.files.upload_and_poll(
            file_path=data_file_path,
            purpose=FilePurpose.AGENTS
        )
        code_interpreter = CodeInterpreterTool(file_ids=[uploaded.id])

    # Create the agent (attach tools only if present)
    agent = client.create_agent(
        model=model_deployment.strip(),
        name="data-agent",
        instructions=(
            "You are an AI agent that analyzes the uploaded data when present. "
            "Use Python via the Code Interpreter to compute statistical metrics "
            "or produce text-based charts when asked. If no file is provided, "
            "proceed with normal reasoning."
        ),
        tools=(code_interpreter.definitions if code_interpreter else None),
        tool_resources=(code_interpreter.resources if code_interpreter else None),
    )

    # Create a thread for the conversation
    thread = client.threads.create()

    # Session we keep in Gradio state
    return {
        "endpoint": endpoint.strip(),
        "api_key": api_key.strip(),
        "model": model_deployment.strip(),
        "client": client,
        "agent_id": agent.id,
        "thread_id": thread.id,
        "has_file": bool(data_file_path),
        "uploaded_path": data_file_path,
    }


def send_to_agent(user_msg: str, session: dict) -> Tuple[str, str]:
    """
    Send a message to the existing agent thread and return:
    - agent_reply (str)
    - history_str (str) readable, chronological log
    """
    if not session or "client" not in session:
        raise ValueError("Agent is not initialized. Click 'Connect & Prepare' first.")

    client: AgentsClient = session["client"]
    agent_id = session["agent_id"]
    thread_id = session["thread_id"]

    # Add user message
    client.messages.create(
        thread_id=thread_id,
        role="user",
        content=user_msg,
    )

    # Run and wait for completion
    run = client.runs.create_and_process(thread_id=thread_id, agent_id=agent_id)
    if getattr(run, "status", None) == "failed":
        last_error = getattr(run, "last_error", "Unknown error")
        return f"Run failed: {last_error}", ""

    # Get last agent message text
    last_msg = client.messages.get_last_message_text_by_role(
        thread_id=thread_id,
        role=MessageRole.AGENT,
    )
    agent_reply = last_msg.text.value if last_msg else "(No reply text found.)"

    # Build readable history (chronological)
    history_lines = []
    messages = client.messages.list(thread_id=thread_id, order=ListSortOrder.ASCENDING)
    for m in messages:
        if m.text_messages:
            last_text = m.text_messages[-1].text.value
            history_lines.append(f"{m.role}: {last_text}")
    history_str = "\n\n".join(history_lines)

    return agent_reply, history_str


def teardown(session: dict) -> str:
    """
    Delete the agent to reduce costs. (Threads are retained by service.)
    """
    if not session:
        return "Nothing to clean up."

    messages = []
    try:
        client: AgentsClient = session.get("client")
        agent_id = session.get("agent_id")
        if client and agent_id:
            client.delete_agent(agent_id)
            messages.append("Deleted agent.")
    except Exception as e:
        messages.append(f"Cleanup warning: {e}")

    return " ".join(messages) if messages else "Cleanup complete."


# ----------------- Gradio App -----------------

with gr.Blocks(title="Azure AI Agent (Endpoint+Key) — Gradio") as demo:
    gr.Markdown(
        "## Azure AI Agent (Code Interpreter Ready)\n"
        "Enter your **Project Endpoint** and **Key**, set your **Model Deployment** (e.g., `gpt-4o`), "
        "optionally upload a data file (TXT/CSV), then chat.\n"
        "Click **Connect & Prepare Agent** once, then send prompts."
    )

    with gr.Row():
        endpoint = gr.Textbox(label="Project Endpoint", placeholder="https://<your-project-endpoint>")
        api_key = gr.Textbox(label="Project Key", placeholder="paste your key", type="password")

    with gr.Row():
        model = gr.Textbox(label="Model Deployment Name", value="gpt-4o")
        data_file = gr.File(
            label="Optional data file (txt/csv) for Code Interpreter",
            file_types=[".txt", ".csv"],
            type="filepath"  # returns a filesystem path string
        )

    session_state = gr.State(value=None)

    connect_btn = gr.Button("🔌 Connect & Prepare Agent", variant="primary")
    connect_status = gr.Markdown("")

    # Use messages-format chatbot
    with gr.Row():
        chatbot = gr.Chatbot(
            label="Conversation",
            height=420,
            type="messages",  # openai-style dicts: {"role": "...", "content": "..."}
        )

    user_input = gr.Textbox(label="Your message", placeholder="Ask a question or request a chart…")
    with gr.Row():
        send_btn = gr.Button("Send ▶")
        cleanup_btn = gr.Button("Delete Agent & Cleanup 🧹")

    history = gr.Textbox(label="Conversation Log (chronological)", lines=12)

    # --------- Callbacks ---------

    def on_connect(ep, key, mdl, fpath):
        try:
            sess = init_agent(ep, key, mdl, fpath)
            return sess, "✅ Connected. Agent and thread are ready."
        except Exception as e:
            return None, f"❌ Connection error: {e}"

    connect_btn.click(
        fn=on_connect,
        inputs=[endpoint, api_key, model, data_file],
        outputs=[session_state, connect_status],
    )

    def on_send(msg: str, session: dict, chat_msgs: List[Dict[str, str]]):
        """
        chat_msgs is a list of dicts with 'role' and 'content' (messages format).
        We append the user's message and the assistant's reply in that same format.
        """
        if not msg:
            return gr.update(), gr.update(), gr.update(value="Please enter a message.")

        try:
            agent_reply, log = send_to_agent(msg, session)

            # Build updated chat message list
            chat_msgs = (chat_msgs or []) + [
                {"role": "user", "content": msg},
                {"role": "assistant", "content": agent_reply},
            ]

            return chat_msgs, "", gr.update(value=log)  # clear user input after send
        except Exception as e:
            # Keep chat as-is, show error in history box
            return chat_msgs, msg, gr.update(value=f"❌ Error: {e}")

    send_btn.click(
        fn=on_send,
        inputs=[user_input, session_state, chatbot],
        outputs=[chatbot, user_input, history],
    )

    def on_cleanup(session):
        try:
            msg = teardown(session)
            return None, f"🧹 {msg}"
        except Exception as e:
            return session, f"⚠️ Cleanup error: {e}"

    cleanup_btn.click(
        fn=on_cleanup,
        inputs=[session_state],
        outputs=[session_state, connect_status],
    )

if __name__ == "__main__":
    # If deploying to spaces/containers you can set server_name/port via env if needed
    demo.launch()