Spaces:
Sleeping
Sleeping
File size: 8,310 Bytes
7a3cfaa fab0335 7a3cfaa 6b29e38 7a3cfaa 6b29e38 7a3cfaa fab0335 6b29e38 fab0335 6b29e38 fab0335 7a3cfaa 6b29e38 7a3cfaa 6b29e38 7a3cfaa 6b29e38 7a3cfaa 6b29e38 7a3cfaa 6b29e38 7a3cfaa 6b29e38 7a3cfaa 6b29e38 7a3cfaa 6b29e38 7a3cfaa 6b29e38 7a3cfaa 6b29e38 7a3cfaa 6b29e38 7a3cfaa |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 |
import gradio as gr
from typing import List, Dict, Set, Callable, Any
import json
import uuid
from pathlib import Path
# Azure SDK auth (Entra ID)
from azure.identity import DefaultAzureCredential
# Azure AI Agents SDK
from azure.ai.agents import AgentsClient
from azure.ai.agents.models import (
FunctionTool,
ToolSet,
ListSortOrder,
MessageRole,
)
# ---------- Inline custom function(s) ----------
def submit_support_ticket(email_address: str, description: str) -> str:
"""
Generates a ticket number and saves a support ticket as a text file
in the current app directory. Returns a small JSON message string.
"""
script_dir = Path(__file__).parent
ticket_number = str(uuid.uuid4()).replace("-", "")[:6]
file_name = f"ticket-{ticket_number}.txt"
file_path = script_dir / file_name
text = (
f"Support ticket: {ticket_number}\n"
f"Submitted by: {email_address}\n"
f"Description:\n{description}\n"
)
file_path.write_text(text, encoding="utf-8")
return json.dumps({
"message": f"Support ticket {ticket_number} submitted. The ticket file is saved as {file_name}"
})
# Register callable tools
user_functions: Set[Callable[..., Any]] = { submit_support_ticket }
# ---------- Core Agent Helpers ----------
def init_agent(project_endpoint: str, model_deployment: str) -> dict:
"""
Initialize an Azure AI Agent (Entra ID auth via DefaultAzureCredential).
Returns a session dict containing client, agent_id, thread_id, etc.
"""
if not project_endpoint or not model_deployment:
raise ValueError("Please provide a Project Endpoint and Model Deployment name (e.g., gpt-4o).")
# Entra ID token credential (requires `az login` or other supported auth in your environment)
credential = DefaultAzureCredential(
exclude_environment_credential=False,
exclude_managed_identity_credential=False,
exclude_shared_token_cache_credential=False,
exclude_visual_studio_code_credential=False,
exclude_powershell_credential=False,
exclude_cli_credential=False, # allows Azure CLI token if you've run `az login`
exclude_interactive_browser_credential=True, # set True for server environments
)
client = AgentsClient(
endpoint=project_endpoint.strip(),
credential=credential,
)
# Build toolset and enable auto function calls
functions_tool = FunctionTool(user_functions)
toolset = ToolSet()
toolset.add(functions_tool)
client.enable_auto_function_calls(toolset)
# Create the agent
agent = client.create_agent(
model=model_deployment.strip(),
name="support-agent",
instructions=(
"You are a technical support agent. "
"Ask for the user's email address and a description of the issue. "
"Then submit a support ticket using the provided function. "
"If a file is saved, tell the user the file name."
),
toolset=toolset,
)
# Create a thread for the conversation
thread = client.threads.create()
# Session we keep in Gradio state
return {
"endpoint": project_endpoint.strip(),
"model": model_deployment.strip(),
"client": client,
"agent_id": agent.id,
"thread_id": thread.id,
}
def send_to_agent(user_msg: str, session: dict):
"""
Send message to the agent thread and return:
- agent_reply (str)
- history_str (str) chronological log
"""
if not session or "client" not in session:
raise ValueError("Agent is not initialized. Click 'Connect & Prepare' first.")
client: AgentsClient = session["client"]
agent_id = session["agent_id"]
thread_id = session["thread_id"]
# Add user message
client.messages.create(
thread_id=thread_id,
role="user",
content=user_msg,
)
# Run and wait (auto function-calls enabled)
run = client.runs.create_and_process(thread_id=thread_id, agent_id=agent_id)
if getattr(run, "status", None) == "failed":
last_error = getattr(run, "last_error", "Unknown error")
return f"Run failed: {last_error}", ""
# Last agent message
last_msg = client.messages.get_last_message_text_by_role(
thread_id=thread_id,
role=MessageRole.AGENT,
)
agent_reply = last_msg.text.value if last_msg else "(No reply text found.)"
# Build readable history (chronological)
history_lines = []
messages = client.messages.list(thread_id=thread_id, order=ListSortOrder.ASCENDING)
for m in messages:
if m.text_messages:
last_text = m.text_messages[-1].text.value
history_lines.append(f"{m.role}: {last_text}")
history_str = "\n\n".join(history_lines)
return agent_reply, history_str
def teardown(session: dict) -> str:
"""
Delete the agent to reduce costs. (Threads are retained by the service.)
"""
if not session:
return "Nothing to clean up."
notes = []
try:
client: AgentsClient = session.get("client")
agent_id = session.get("agent_id")
if client and agent_id:
client.delete_agent(agent_id)
notes.append("Deleted agent.")
except Exception as e:
notes.append(f"Cleanup warning: {e}")
return " ".join(notes) if notes else "Cleanup complete."
# ---------- Gradio UI ----------
with gr.Blocks(title="Azure AI Support Agent (Functions) β Gradio") as demo:
gr.Markdown(
"## Azure AI Support Agent (Custom Function Tool)\n"
"1) **Run `az login`** in the same environment. \n"
"2) Paste your **Project Endpoint** and **Model Deployment** (e.g., `gpt-4o`). \n"
"Then chat β the agent can auto-call a function to submit a support ticket."
)
with gr.Row():
endpoint = gr.Textbox(label="Project Endpoint", placeholder="https://<your-project-endpoint>")
model = gr.Textbox(label="Model Deployment Name", value="gpt-4o")
session_state = gr.State(value=None)
connect_btn = gr.Button("π Connect & Prepare Agent", variant="primary")
connect_status = gr.Markdown("")
with gr.Row():
chatbot = gr.Chatbot(
label="Conversation",
height=420,
type="messages", # openai-style dicts: {"role": "...", "content": "..."}
)
user_input = gr.Textbox(label="Your message", placeholder="e.g., I have a technical problem")
with gr.Row():
send_btn = gr.Button("Send βΆ")
cleanup_btn = gr.Button("Delete Agent & Cleanup π§Ή")
history = gr.Textbox(label="Conversation Log (chronological)", lines=12)
# ----- Callbacks -----
def on_connect(ep, mdl):
try:
sess = init_agent(ep, mdl)
return sess, "β
Connected. Support agent and thread are ready. (Auth via DefaultAzureCredential)"
except Exception as e:
return None, f"β Connection error: {e}"
connect_btn.click(
fn=on_connect,
inputs=[endpoint, model],
outputs=[session_state, connect_status],
)
def on_send(msg: str, session: dict, chat_msgs: List[Dict[str, str]]):
if not msg:
return gr.update(), gr.update(), gr.update(value="Please enter a message.")
try:
agent_reply, log = send_to_agent(msg, session)
chat_msgs = (chat_msgs or []) + [
{"role": "user", "content": msg},
{"role": "assistant", "content": agent_reply},
]
return chat_msgs, "", gr.update(value=log) # clear input, update log
except Exception as e:
return chat_msgs, msg, gr.update(value=f"β Error: {e}")
send_btn.click(
fn=on_send,
inputs=[user_input, session_state, chatbot],
outputs=[chatbot, user_input, history],
)
def on_cleanup(session):
try:
msg = teardown(session)
return None, f"π§Ή {msg}"
except Exception as e:
return session, f"β οΈ Cleanup error: {e}"
cleanup_btn.click(
fn=on_cleanup,
inputs=[session_state],
outputs=[session_state, connect_status],
)
if __name__ == "__main__":
demo.launch()
|