Spaces:
Running
Running
import gradio as gr | |
from typing import List, Dict, Set, Callable, Any | |
import json | |
import uuid | |
from pathlib import Path | |
# Azure SDK auth (Entra ID) | |
from azure.identity import DefaultAzureCredential | |
# Azure AI Agents SDK | |
from azure.ai.agents import AgentsClient | |
from azure.ai.agents.models import ( | |
FunctionTool, | |
ToolSet, | |
ListSortOrder, | |
MessageRole, | |
) | |
# ---------- Inline custom function(s) ---------- | |
def submit_support_ticket(email_address: str, description: str) -> str: | |
""" | |
Generates a ticket number and saves a support ticket as a text file | |
in the current app directory. Returns a small JSON message string. | |
""" | |
script_dir = Path(__file__).parent | |
ticket_number = str(uuid.uuid4()).replace("-", "")[:6] | |
file_name = f"ticket-{ticket_number}.txt" | |
file_path = script_dir / file_name | |
text = ( | |
f"Support ticket: {ticket_number}\n" | |
f"Submitted by: {email_address}\n" | |
f"Description:\n{description}\n" | |
) | |
file_path.write_text(text, encoding="utf-8") | |
return json.dumps({ | |
"message": f"Support ticket {ticket_number} submitted. The ticket file is saved as {file_name}" | |
}) | |
# Register callable tools | |
user_functions: Set[Callable[..., Any]] = { submit_support_ticket } | |
# ---------- Core Agent Helpers ---------- | |
def init_agent(project_endpoint: str, model_deployment: str) -> dict: | |
""" | |
Initialize an Azure AI Agent (Entra ID auth via DefaultAzureCredential). | |
Returns a session dict containing client, agent_id, thread_id, etc. | |
""" | |
if not project_endpoint or not model_deployment: | |
raise ValueError("Please provide a Project Endpoint and Model Deployment name (e.g., gpt-4o).") | |
# Entra ID token credential (requires `az login` or other supported auth in your environment) | |
credential = DefaultAzureCredential( | |
exclude_environment_credential=False, | |
exclude_managed_identity_credential=False, | |
exclude_shared_token_cache_credential=False, | |
exclude_visual_studio_code_credential=False, | |
exclude_powershell_credential=False, | |
exclude_cli_credential=False, # allows Azure CLI token if you've run `az login` | |
exclude_interactive_browser_credential=True, # set True for server environments | |
) | |
client = AgentsClient( | |
endpoint=project_endpoint.strip(), | |
credential=credential, | |
) | |
# Build toolset and enable auto function calls | |
functions_tool = FunctionTool(user_functions) | |
toolset = ToolSet() | |
toolset.add(functions_tool) | |
client.enable_auto_function_calls(toolset) | |
# Create the agent | |
agent = client.create_agent( | |
model=model_deployment.strip(), | |
name="support-agent", | |
instructions=( | |
"You are a technical support agent. " | |
"Ask for the user's email address and a description of the issue. " | |
"Then submit a support ticket using the provided function. " | |
"If a file is saved, tell the user the file name." | |
), | |
toolset=toolset, | |
) | |
# Create a thread for the conversation | |
thread = client.threads.create() | |
# Session we keep in Gradio state | |
return { | |
"endpoint": project_endpoint.strip(), | |
"model": model_deployment.strip(), | |
"client": client, | |
"agent_id": agent.id, | |
"thread_id": thread.id, | |
} | |
def send_to_agent(user_msg: str, session: dict): | |
""" | |
Send message to the agent thread and return: | |
- agent_reply (str) | |
- history_str (str) chronological log | |
""" | |
if not session or "client" not in session: | |
raise ValueError("Agent is not initialized. Click 'Connect & Prepare' first.") | |
client: AgentsClient = session["client"] | |
agent_id = session["agent_id"] | |
thread_id = session["thread_id"] | |
# Add user message | |
client.messages.create( | |
thread_id=thread_id, | |
role="user", | |
content=user_msg, | |
) | |
# Run and wait (auto function-calls enabled) | |
run = client.runs.create_and_process(thread_id=thread_id, agent_id=agent_id) | |
if getattr(run, "status", None) == "failed": | |
last_error = getattr(run, "last_error", "Unknown error") | |
return f"Run failed: {last_error}", "" | |
# Last agent message | |
last_msg = client.messages.get_last_message_text_by_role( | |
thread_id=thread_id, | |
role=MessageRole.AGENT, | |
) | |
agent_reply = last_msg.text.value if last_msg else "(No reply text found.)" | |
# Build readable history (chronological) | |
history_lines = [] | |
messages = client.messages.list(thread_id=thread_id, order=ListSortOrder.ASCENDING) | |
for m in messages: | |
if m.text_messages: | |
last_text = m.text_messages[-1].text.value | |
history_lines.append(f"{m.role}: {last_text}") | |
history_str = "\n\n".join(history_lines) | |
return agent_reply, history_str | |
def teardown(session: dict) -> str: | |
""" | |
Delete the agent to reduce costs. (Threads are retained by the service.) | |
""" | |
if not session: | |
return "Nothing to clean up." | |
notes = [] | |
try: | |
client: AgentsClient = session.get("client") | |
agent_id = session.get("agent_id") | |
if client and agent_id: | |
client.delete_agent(agent_id) | |
notes.append("Deleted agent.") | |
except Exception as e: | |
notes.append(f"Cleanup warning: {e}") | |
return " ".join(notes) if notes else "Cleanup complete." | |
# ---------- Gradio UI ---------- | |
with gr.Blocks(title="Azure AI Support Agent (Functions) β Gradio") as demo: | |
gr.Markdown( | |
"## Azure AI Support Agent (Custom Function Tool)\n" | |
"1) **Run `az login`** in the same environment. \n" | |
"2) Paste your **Project Endpoint** and **Model Deployment** (e.g., `gpt-4o`). \n" | |
"Then chat β the agent can auto-call a function to submit a support ticket." | |
) | |
with gr.Row(): | |
endpoint = gr.Textbox(label="Project Endpoint", placeholder="https://<your-project-endpoint>") | |
model = gr.Textbox(label="Model Deployment Name", value="gpt-4o") | |
session_state = gr.State(value=None) | |
connect_btn = gr.Button("π Connect & Prepare Agent", variant="primary") | |
connect_status = gr.Markdown("") | |
with gr.Row(): | |
chatbot = gr.Chatbot( | |
label="Conversation", | |
height=420, | |
type="messages", # openai-style dicts: {"role": "...", "content": "..."} | |
) | |
user_input = gr.Textbox(label="Your message", placeholder="e.g., I have a technical problem") | |
with gr.Row(): | |
send_btn = gr.Button("Send βΆ") | |
cleanup_btn = gr.Button("Delete Agent & Cleanup π§Ή") | |
history = gr.Textbox(label="Conversation Log (chronological)", lines=12) | |
# ----- Callbacks ----- | |
def on_connect(ep, mdl): | |
try: | |
sess = init_agent(ep, mdl) | |
return sess, "β Connected. Support agent and thread are ready. (Auth via DefaultAzureCredential)" | |
except Exception as e: | |
return None, f"β Connection error: {e}" | |
connect_btn.click( | |
fn=on_connect, | |
inputs=[endpoint, model], | |
outputs=[session_state, connect_status], | |
) | |
def on_send(msg: str, session: dict, chat_msgs: List[Dict[str, str]]): | |
if not msg: | |
return gr.update(), gr.update(), gr.update(value="Please enter a message.") | |
try: | |
agent_reply, log = send_to_agent(msg, session) | |
chat_msgs = (chat_msgs or []) + [ | |
{"role": "user", "content": msg}, | |
{"role": "assistant", "content": agent_reply}, | |
] | |
return chat_msgs, "", gr.update(value=log) # clear input, update log | |
except Exception as e: | |
return chat_msgs, msg, gr.update(value=f"β Error: {e}") | |
send_btn.click( | |
fn=on_send, | |
inputs=[user_input, session_state, chatbot], | |
outputs=[chatbot, user_input, history], | |
) | |
def on_cleanup(session): | |
try: | |
msg = teardown(session) | |
return None, f"π§Ή {msg}" | |
except Exception as e: | |
return session, f"β οΈ Cleanup error: {e}" | |
cleanup_btn.click( | |
fn=on_cleanup, | |
inputs=[session_state], | |
outputs=[session_state, connect_status], | |
) | |
if __name__ == "__main__": | |
demo.launch() | |