File size: 12,723 Bytes
70830d6
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
d2c1e33
70830d6
 
 
 
 
 
 
 
683d749
 
 
 
 
70830d6
 
 
 
 
d2c1e33
70830d6
d2c1e33
70830d6
 
 
 
683d749
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
bae16e4
683d749
 
 
 
bae16e4
 
 
 
70830d6
 
 
 
 
 
 
 
 
 
 
 
 
 
 
683d749
 
 
 
bae16e4
 
 
 
 
 
 
70830d6
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
7a13a15
70830d6
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
bae16e4
70830d6
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
683d749
70830d6
 
 
 
 
 
 
 
 
 
 
 
 
683d749
70830d6
 
 
 
 
 
 
bae16e4
70830d6
 
 
 
 
 
 
 
 
683d749
70830d6
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
683d749
70830d6
 
 
 
 
 
 
bae16e4
70830d6
 
 
 
 
 
 
683d749
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
70830d6
 
 
 
 
 
 
 
 
683d749
70830d6
bae16e4
70830d6
 
 
 
 
 
 
 
 
 
 
 
bae16e4
70830d6
 
 
 
 
 
 
 
d2c1e33
 
 
70830d6
 
 
 
 
 
 
 
 
bae16e4
70830d6
 
 
 
 
bae16e4
70830d6
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
bae16e4
70830d6
 
 
 
 
 
 
 
 
 
 
 
 
bae16e4
70830d6
 
 
 
 
 
 
d2c1e33
 
 
70830d6
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
683d749
70830d6
bae16e4
70830d6
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
from abc import ABC
from anthropic import Anthropic
from openai import OpenAI
from groq import Groq
import logging
from typing import Dict, Type, Self, List
import os
import time

logger = logging.getLogger(__name__)


class LLMException(Exception):
    pass


class LLM(ABC):
    """
    An abstract superclass for interacting with LLMs - subclass for Claude and GPT
    """

    model_names = []

    def __init__(self, model_name: str, temperature: float):
        self.model_name = model_name
        self.client = None
        self.temperature = temperature

    def send(self, system: str, user: str, max_tokens: int = 3000) -> str:
        """
        Send a message
        :param system: the context in which this message is to be taken
        :param user: the prompt
        :param max_tokens: max number of tokens to generate
        :return: the response from the AI
        """

        result = self.protected_send(system, user, max_tokens)
        left = result.find("{")
        right = result.rfind("}")
        if left > -1 and right > -1:
            result = result[left : right + 1]
        return result

    def protected_send(self, system: str, user: str, max_tokens: int = 3000) -> str:
        """
        Wrap the send call in an exception handler, giving the LLM 3 chances in total, in case
        of overload errors. If it fails 3 times, then it forfeits!
        """
        retries = 3
        while retries:
            retries -= 1
            try:
                return self._send(system, user, max_tokens)
            except Exception as e:
                logging.error(f"Exception on calling LLM of {e}")
                if retries:
                    logging.warning("Waiting 2s and retrying")
                    time.sleep(2)
        return "{}"

    def _send(self, system: str, user: str, max_tokens: int = 3000) -> str:
        """
        Send a message to the model - this default implementation follows the OpenAI API structure
        :param system: the context in which this message is to be taken
        :param user: the prompt
        :param max_tokens: max number of tokens to generate
        :return: the response from the AI
        """
        response = self.client.chat.completions.create(
            model=self.api_model_name(),
            messages=[
                {"role": "system", "content": system},
                {"role": "user", "content": user},
            ],
            response_format={"type": "json_object"},
        )
        return response.choices[0].message.content

    def api_model_name(self) -> str:
        """
        Return the actual model_name to be used in the call to the API; strip out anything after a space
        """
        if " " in self.model_name:
            return self.model_name.split(" ")[0]
        else:
            return self.model_name

    @classmethod
    def model_map(cls) -> Dict[str, Type[Self]]:
        """
        Generate a mapping of Model Names to LLM classes, by looking at all subclasses of this one
        :return: a mapping dictionary from model name to LLM subclass
        """
        mapping = {}
        for llm in cls.__subclasses__():
            for model_name in llm.model_names:
                mapping[model_name] = llm
        return mapping

    @classmethod
    def all_model_names(cls) -> List[str]:
        """
        Return a list of all the model names supported.
        Use the ones specified in the model_map, but also check if there's an env variable set that restricts the models
        """
        models = list(cls.model_map().keys())
        allowed = os.getenv("MODELS")
        if allowed:
            allowed_models = allowed.split(",")
            return [model for model in models if model in allowed_models]
        else:
            return models

    @classmethod
    def create(cls, model_name: str, temperature: float = 0.5) -> Self:
        """
        Return an instance of a subclass that corresponds to this model_name
        :param model_name: a string to describe this model
        :param temperature: the creativity setting
        :return: a new instance of a subclass of LLM
        """
        subclass = cls.model_map().get(model_name)
        if not subclass:
            raise LLMException(f"Unrecognized LLM model name specified: {model_name}")
        return subclass(model_name, temperature)


class Claude(LLM):
    """
    A class to act as an interface to the remote AI, in this case Claude
    """

    model_names = ["claude-3-5-sonnet-latest", "claude-3-7-sonnet-latest"]

    def __init__(self, model_name: str, temperature: float):
        """
        Create a new instance of the Anthropic client
        """
        super().__init__(model_name, temperature)
        self.client = Anthropic()

    def _send(self, system: str, user: str, max_tokens: int = 3000) -> str:
        """
        Send a message to Claude
        :param system: the context in which this message is to be taken
        :param user: the prompt
        :param max_tokens: max number of tokens to generate
        :return: the response from the AI
        """
        response = self.client.messages.create(
            model=self.api_model_name(),
            max_tokens=max_tokens,
            temperature=self.temperature,
            system=system,
            messages=[
                {"role": "user", "content": user},
            ],
        )
        return response.content[0].text


class GPT(LLM):
    """
    A class to act as an interface to the remote AI, in this case GPT
    """

    model_names = ["gpt-4o-mini", "gpt-4o"]

    def __init__(self, model_name: str, temperature: float):
        """
        Create a new instance of the OpenAI client
        """
        super().__init__(model_name, temperature)
        self.client = OpenAI()


class O1(LLM):
    """
    A class to act as an interface to the remote AI, in this case O1
    """

    model_names = ["o1-mini"]

    def __init__(self, model_name: str, temperature: float):
        """
        Create a new instance of the OpenAI client
        """
        super().__init__(model_name, temperature)
        self.client = OpenAI()

    def _send(self, system: str, user: str, max_tokens: int = 3000) -> str:
        """
        Send a message to O1
        :param system: the context in which this message is to be taken
        :param user: the prompt
        :param max_tokens: max number of tokens to generate
        :return: the response from the AI
        """
        message = system + "\n\n" + user
        response = self.client.chat.completions.create(
            model=self.api_model_name(),
            messages=[
                {"role": "user", "content": message},
            ],
        )
        return response.choices[0].message.content


class O3(LLM):
    """
    A class to act as an interface to the remote AI, in this case O3
    """

    model_names = ["o3-mini"]

    def __init__(self, model_name: str, temperature: float):
        """
        Create a new instance of the OpenAI client
        """
        super().__init__(model_name, temperature)
        override = os.getenv("OPENAI_API_KEY_O3")
        if override:
            print("Using special key with o3 access")
            self.client = OpenAI(api_key=override)
        else:
            self.client = OpenAI()

    def _send(self, system: str, user: str, max_tokens: int = 3000) -> str:
        """
        Send a message to O3
        :param system: the context in which this message is to be taken
        :param user: the prompt
        :param max_tokens: max number of tokens to generate
        :return: the response from the AI
        """
        message = system + "\n\n" + user
        response = self.client.chat.completions.create(
            model=self.api_model_name(),
            messages=[
                {"role": "user", "content": message},
            ],
        )
        return response.choices[0].message.content


class Gemini(LLM):
    """
    A class to act as an interface to the remote AI, in this case Gemini
    """

    model_names = ["gemini-2.0-flash", "gemini-1.5-flash"]

    def __init__(self, model_name: str, temperature: float):
        """
        Create a new instance of the OpenAI client
        """
        super().__init__(model_name, temperature)
        google_api_key = os.getenv("GOOGLE_API_KEY")
        self.client = OpenAI(
            api_key=google_api_key,
            base_url="https://generativelanguage.googleapis.com/v1beta/openai/",
        )


class Ollama(LLM):
    """
    A class to act as an interface to the remote AI, in this case Ollama via the OpenAI client
    """

    model_names = ["llama3.2 local", "gemma2 local", "qwen2.5 local", "phi4 local"]

    def __init__(self, model_name: str, temperature: float):
        """
        Create a new instance of the OpenAI client for Ollama
        """
        super().__init__(model_name, temperature)
        self.client = OpenAI(base_url="http://localhost:11434/v1", api_key="ollama")

    def _send(self, system: str, user: str, max_tokens: int = 3000) -> str:
        """
        Send a message to Ollama
        :param system: the context in which this message is to be taken
        :param user: the prompt
        :param max_tokens: max number of tokens to generate
        :return: the response from the AI
        """

        response = self.client.chat.completions.create(
            model=self.api_model_name(),
            messages=[
                {"role": "system", "content": system},
                {"role": "user", "content": user},
            ],
            response_format={"type": "json_object"},
        )
        reply = response.choices[0].message.content
        if "</think>" in reply:
            logging.info(
                "Thoughts:\n" + reply.split("</think>")[0].replace("<think>", "")
            )
            reply = reply.split("</think>")[1]
        return reply


class DeepSeekAPI(LLM):
    """
    A class to act as an interface to the remote AI, in this case DeepSeek via the OpenAI client
    """

    model_names = ["deepseek-chat V3", "deepseek-reasoner R1"]

    def __init__(self, model_name: str, temperature: float):
        """
        Create a new instance of the OpenAI client
        """
        super().__init__(model_name, temperature)
        deepseek_api_key = os.getenv("DEEPSEEK_API_KEY")
        self.client = OpenAI(
            api_key=deepseek_api_key, base_url="https://api.deepseek.com"
        )


class DeepSeekLocal(LLM):
    """
    A class to act as an interface to the remote AI, in this case Ollama via the OpenAI client
    """

    model_names = ["deepseek-r1:14b local"]

    def __init__(self, model_name: str, temperature: float):
        """
        Create a new instance of the OpenAI client
        """
        super().__init__(model_name, temperature)
        self.client = OpenAI(base_url="http://localhost:11434/v1", api_key="ollama")

    def _send(self, system: str, user: str, max_tokens: int = 3000) -> str:
        """
        Send a message to Ollama
        :param system: the context in which this message is to be taken
        :param user: the prompt
        :param max_tokens: max number of tokens to generate
        :return: the response from the AI
        """
        system += "\nImportant: avoid overthinking. Think briefly and decisively. The final response must follow the given json format or you forfeit the game. Do not overthink. Respond with json."
        user += "\nImportant: avoid overthinking. Think briefly and decisively. The final response must follow the given json format or you forfeit the game. Do not overthink. Respond with json."
        response = self.client.chat.completions.create(
            model=self.api_model_name(),
            messages=[
                {"role": "system", "content": system},
                {"role": "user", "content": user},
            ],
        )
        reply = response.choices[0].message.content
        if "</think>" in reply:
            logging.info(
                "Thoughts:\n" + reply.split("</think>")[0].replace("<think>", "")
            )
            reply = reply.split("</think>")[1]
        return reply


class GroqAPI(LLM):
    """
    A class to act as an interface to the remote AI, in this case Groq
    """

    model_names = [
        "deepseek-r1-distill-llama-70b via Groq",
        "llama-3.3-70b-versatile via Groq",
        "mixtral-8x7b-32768 via Groq",
    ]

    def __init__(self, model_name: str, temperature: float):
        """
        Create a new instance of the Groq client
        """
        super().__init__(model_name, temperature)
        self.client = Groq()