Spaces:
Runtime error
Runtime error
Added attention masking and intersect masking; fix truncation of prompts
#23
by
KatharinaK
- opened
modified_pipeline_semantic_stable_diffusion.py
CHANGED
|
@@ -9,16 +9,180 @@ from transformers import CLIPImageProcessor, CLIPTextModel, CLIPTokenizer
|
|
| 9 |
|
| 10 |
from diffusers.image_processor import VaeImageProcessor
|
| 11 |
from diffusers.models import AutoencoderKL, UNet2DConditionModel
|
|
|
|
| 12 |
from diffusers.pipelines.stable_diffusion.safety_checker import StableDiffusionSafetyChecker
|
| 13 |
from diffusers.schedulers import KarrasDiffusionSchedulers
|
| 14 |
-
from diffusers.utils import logging
|
|
|
|
| 15 |
from diffusers.pipelines.pipeline_utils import DiffusionPipeline
|
| 16 |
from diffusers.pipelines.stable_diffusion import StableDiffusionPipelineOutput
|
| 17 |
# from . import SemanticStableDiffusionPipelineOutput
|
| 18 |
|
|
|
|
|
|
|
| 19 |
|
| 20 |
logger = logging.get_logger(__name__) # pylint: disable=invalid-name
|
| 21 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 22 |
|
| 23 |
class SemanticStableDiffusionPipeline(DiffusionPipeline):
|
| 24 |
r"""
|
|
@@ -207,6 +371,29 @@ class SemanticStableDiffusionPipeline(DiffusionPipeline):
|
|
| 207 |
latents = latents * self.scheduler.init_noise_sigma
|
| 208 |
return latents
|
| 209 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 210 |
@torch.no_grad()
|
| 211 |
def __call__(
|
| 212 |
self,
|
|
@@ -235,7 +422,13 @@ class SemanticStableDiffusionPipeline(DiffusionPipeline):
|
|
| 235 |
edit_mom_beta: Optional[float] = 0.4,
|
| 236 |
edit_weights: Optional[List[float]] = None,
|
| 237 |
sem_guidance: Optional[List[torch.Tensor]] = None,
|
| 238 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 239 |
# DDPM additions
|
| 240 |
use_ddpm: bool = False,
|
| 241 |
wts: Optional[List[torch.Tensor]] = None,
|
|
@@ -334,6 +527,12 @@ class SemanticStableDiffusionPipeline(DiffusionPipeline):
|
|
| 334 |
second element is a list of `bool`s denoting whether the corresponding generated image likely represents
|
| 335 |
"not-safe-for-work" (nsfw) content, according to the `safety_checker`.
|
| 336 |
"""
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 337 |
# 0. Default height and width to unet
|
| 338 |
height = height or self.unet.config.sample_size * self.vae_scale_factor
|
| 339 |
width = width or self.unet.config.sample_size * self.vae_scale_factor
|
|
@@ -348,12 +547,12 @@ class SemanticStableDiffusionPipeline(DiffusionPipeline):
|
|
| 348 |
enable_edit_guidance = True
|
| 349 |
if isinstance(editing_prompt, str):
|
| 350 |
editing_prompt = [editing_prompt]
|
| 351 |
-
enabled_editing_prompts = len(editing_prompt)
|
| 352 |
elif editing_prompt_embeddings is not None:
|
| 353 |
enable_edit_guidance = True
|
| 354 |
-
enabled_editing_prompts = editing_prompt_embeddings.shape[0]
|
| 355 |
else:
|
| 356 |
-
enabled_editing_prompts = 0
|
| 357 |
enable_edit_guidance = False
|
| 358 |
|
| 359 |
# get prompt text embeddings
|
|
@@ -361,17 +560,23 @@ class SemanticStableDiffusionPipeline(DiffusionPipeline):
|
|
| 361 |
prompt,
|
| 362 |
padding="max_length",
|
| 363 |
max_length=self.tokenizer.model_max_length,
|
|
|
|
| 364 |
return_tensors="pt",
|
| 365 |
)
|
| 366 |
text_input_ids = text_inputs.input_ids
|
|
|
|
| 367 |
|
| 368 |
-
if text_input_ids.shape[-1]
|
| 369 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
| 370 |
logger.warning(
|
| 371 |
"The following part of your input was truncated because CLIP can only handle sequences up to"
|
| 372 |
f" {self.tokenizer.model_max_length} tokens: {removed_text}"
|
| 373 |
)
|
| 374 |
-
|
| 375 |
text_embeddings = self.text_encoder(text_input_ids.to(self.device))[0]
|
| 376 |
|
| 377 |
# duplicate text embeddings for each generation per prompt, using mps friendly method
|
|
@@ -382,24 +587,37 @@ class SemanticStableDiffusionPipeline(DiffusionPipeline):
|
|
| 382 |
if enable_edit_guidance:
|
| 383 |
# get safety text embeddings
|
| 384 |
if editing_prompt_embeddings is None:
|
|
|
|
|
|
|
|
|
|
|
|
|
| 385 |
edit_concepts_input = self.tokenizer(
|
| 386 |
[x for item in editing_prompt for x in repeat(item, batch_size)],
|
| 387 |
padding="max_length",
|
| 388 |
max_length=self.tokenizer.model_max_length,
|
|
|
|
| 389 |
return_tensors="pt",
|
|
|
|
| 390 |
)
|
| 391 |
|
|
|
|
| 392 |
edit_concepts_input_ids = edit_concepts_input.input_ids
|
|
|
|
|
|
|
|
|
|
|
|
|
| 393 |
|
| 394 |
-
if edit_concepts_input_ids.shape[-1]
|
|
|
|
|
|
|
| 395 |
removed_text = self.tokenizer.batch_decode(
|
| 396 |
-
|
| 397 |
)
|
| 398 |
logger.warning(
|
| 399 |
"The following part of your input was truncated because CLIP can only handle sequences up to"
|
| 400 |
f" {self.tokenizer.model_max_length} tokens: {removed_text}"
|
| 401 |
)
|
| 402 |
-
|
| 403 |
edit_concepts = self.text_encoder(edit_concepts_input_ids.to(self.device))[0]
|
| 404 |
else:
|
| 405 |
edit_concepts = editing_prompt_embeddings.to(self.device).repeat(batch_size, 1, 1)
|
|
@@ -453,8 +671,11 @@ class SemanticStableDiffusionPipeline(DiffusionPipeline):
|
|
| 453 |
# For classifier free guidance, we need to do two forward passes.
|
| 454 |
# Here we concatenate the unconditional and text embeddings into a single batch
|
| 455 |
# to avoid doing two forward passes
|
|
|
|
| 456 |
if enable_edit_guidance:
|
| 457 |
text_embeddings = torch.cat([uncond_embeddings, text_embeddings, edit_concepts])
|
|
|
|
|
|
|
| 458 |
else:
|
| 459 |
text_embeddings = torch.cat([uncond_embeddings, text_embeddings])
|
| 460 |
# get the initial random noise unless the user supplied it
|
|
@@ -466,6 +687,9 @@ class SemanticStableDiffusionPipeline(DiffusionPipeline):
|
|
| 466 |
t_to_idx = {int(v):k for k,v in enumerate(timesteps[-zs.shape[0]:])}
|
| 467 |
timesteps = timesteps[-zs.shape[0]:]
|
| 468 |
|
|
|
|
|
|
|
|
|
|
| 469 |
# 5. Prepare latent variables
|
| 470 |
num_channels_latents = self.unet.config.in_channels
|
| 471 |
latents = self.prepare_latents(
|
|
@@ -493,7 +717,7 @@ class SemanticStableDiffusionPipeline(DiffusionPipeline):
|
|
| 493 |
for i, t in enumerate(self.progress_bar(timesteps)):
|
| 494 |
# expand the latents if we are doing classifier free guidance
|
| 495 |
latent_model_input = (
|
| 496 |
-
torch.cat([latents] * (2 + enabled_editing_prompts)) if do_classifier_free_guidance else latents
|
| 497 |
)
|
| 498 |
latent_model_input = self.scheduler.scale_model_input(latent_model_input, t)
|
| 499 |
|
|
@@ -502,7 +726,7 @@ class SemanticStableDiffusionPipeline(DiffusionPipeline):
|
|
| 502 |
|
| 503 |
# perform guidance
|
| 504 |
if do_classifier_free_guidance:
|
| 505 |
-
noise_pred_out = noise_pred.chunk(2 + enabled_editing_prompts) # [b,4, 64, 64]
|
| 506 |
noise_pred_uncond, noise_pred_text = noise_pred_out[0], noise_pred_out[1]
|
| 507 |
noise_pred_edit_concepts = noise_pred_out[2:]
|
| 508 |
|
|
@@ -589,27 +813,115 @@ class SemanticStableDiffusionPipeline(DiffusionPipeline):
|
|
| 589 |
|
| 590 |
noise_guidance_edit_tmp = noise_guidance_edit_tmp * edit_guidance_scale_c
|
| 591 |
|
| 592 |
-
|
| 593 |
-
|
| 594 |
-
|
| 595 |
-
|
| 596 |
-
|
| 597 |
-
|
| 598 |
-
|
|
|
|
| 599 |
)
|
| 600 |
-
|
| 601 |
-
|
| 602 |
-
|
| 603 |
-
|
| 604 |
-
|
| 605 |
-
|
| 606 |
-
|
| 607 |
-
|
| 608 |
-
|
| 609 |
-
|
| 610 |
-
|
| 611 |
-
|
| 612 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 613 |
noise_guidance_edit[c, :, :, :, :] = noise_guidance_edit_tmp
|
| 614 |
|
| 615 |
# noise_guidance_edit = noise_guidance_edit + noise_guidance_edit_tmp
|
|
@@ -712,6 +1024,12 @@ class SemanticStableDiffusionPipeline(DiffusionPipeline):
|
|
| 712 |
else: #if not use_ddpm:
|
| 713 |
latents = self.scheduler.step(noise_pred, t, latents, **extra_step_kwargs).prev_sample
|
| 714 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 715 |
# call the callback, if provided
|
| 716 |
if callback is not None and i % callback_steps == 0:
|
| 717 |
callback(i, t, latents)
|
|
|
|
| 9 |
|
| 10 |
from diffusers.image_processor import VaeImageProcessor
|
| 11 |
from diffusers.models import AutoencoderKL, UNet2DConditionModel
|
| 12 |
+
from diffusers.models.attention_processor import AttnProcessor, Attention
|
| 13 |
from diffusers.pipelines.stable_diffusion.safety_checker import StableDiffusionSafetyChecker
|
| 14 |
from diffusers.schedulers import KarrasDiffusionSchedulers
|
| 15 |
+
from diffusers.utils import logging
|
| 16 |
+
from diffusers.utils.torch_utils import randn_tensor
|
| 17 |
from diffusers.pipelines.pipeline_utils import DiffusionPipeline
|
| 18 |
from diffusers.pipelines.stable_diffusion import StableDiffusionPipelineOutput
|
| 19 |
# from . import SemanticStableDiffusionPipelineOutput
|
| 20 |
|
| 21 |
+
import torch.nn.functional as F
|
| 22 |
+
import math
|
| 23 |
|
| 24 |
logger = logging.get_logger(__name__) # pylint: disable=invalid-name
|
| 25 |
|
| 26 |
+
class AttentionStore():
|
| 27 |
+
@staticmethod
|
| 28 |
+
def get_empty_store():
|
| 29 |
+
return {"down_cross": [], "mid_cross": [], "up_cross": [],
|
| 30 |
+
"down_self": [], "mid_self": [], "up_self": []}
|
| 31 |
+
|
| 32 |
+
def __call__(self, attn, is_cross: bool, place_in_unet: str, editing_prompts, PnP):
|
| 33 |
+
# attn.shape = batch_size * head_size, seq_len query, seq_len_key
|
| 34 |
+
bs = 2 + int(PnP) + editing_prompts
|
| 35 |
+
source_batch_size = int(attn.shape[0] // bs)
|
| 36 |
+
skip = 2 if PnP else 1 # skip PnP & unconditional
|
| 37 |
+
self.forward(
|
| 38 |
+
attn[skip*source_batch_size:],
|
| 39 |
+
is_cross,
|
| 40 |
+
place_in_unet)
|
| 41 |
+
|
| 42 |
+
def forward(self, attn, is_cross: bool, place_in_unet: str):
|
| 43 |
+
key = f"{place_in_unet}_{'cross' if is_cross else 'self'}"
|
| 44 |
+
if attn.shape[1] <= 32 ** 2: # avoid memory overhead
|
| 45 |
+
self.step_store[key].append(attn)
|
| 46 |
+
|
| 47 |
+
def between_steps(self, store_step=True):
|
| 48 |
+
if store_step:
|
| 49 |
+
if self.average:
|
| 50 |
+
if len(self.attention_store) == 0:
|
| 51 |
+
self.attention_store = self.step_store
|
| 52 |
+
else:
|
| 53 |
+
for key in self.attention_store:
|
| 54 |
+
for i in range(len(self.attention_store[key])):
|
| 55 |
+
self.attention_store[key][i] += self.step_store[key][i]
|
| 56 |
+
else:
|
| 57 |
+
if len(self.attention_store) == 0:
|
| 58 |
+
self.attention_store = [self.step_store]
|
| 59 |
+
else:
|
| 60 |
+
self.attention_store.append(self.step_store)
|
| 61 |
+
|
| 62 |
+
self.cur_step += 1
|
| 63 |
+
self.step_store = self.get_empty_store()
|
| 64 |
+
|
| 65 |
+
def get_attention(self, step: int):
|
| 66 |
+
if self.average:
|
| 67 |
+
attention = {key: [item / self.cur_step for item in self.attention_store[key]] for key in self.attention_store}
|
| 68 |
+
else:
|
| 69 |
+
assert(step is not None)
|
| 70 |
+
attention = self.attention_store[step]
|
| 71 |
+
return attention
|
| 72 |
+
|
| 73 |
+
def aggregate_attention(self, attention_maps, prompts, res: int,
|
| 74 |
+
from_where: List[str], is_cross: bool, select: int
|
| 75 |
+
):
|
| 76 |
+
out = []
|
| 77 |
+
num_pixels = res ** 2
|
| 78 |
+
for location in from_where:
|
| 79 |
+
for item in attention_maps[f"{location}_{'cross' if is_cross else 'self'}"]:
|
| 80 |
+
if item.shape[1] == num_pixels:
|
| 81 |
+
cross_maps = item.reshape(len(prompts), -1, res, res, item.shape[-1])[select]
|
| 82 |
+
out.append(cross_maps)
|
| 83 |
+
out = torch.cat(out, dim=0)
|
| 84 |
+
# average over heads
|
| 85 |
+
out = out.sum(0) / out.shape[0]
|
| 86 |
+
return out
|
| 87 |
+
|
| 88 |
+
def __init__(self, average: bool):
|
| 89 |
+
self.step_store = self.get_empty_store()
|
| 90 |
+
self.attention_store = []
|
| 91 |
+
self.cur_step = 0
|
| 92 |
+
self.average = average
|
| 93 |
+
|
| 94 |
+
class CrossAttnProcessor:
|
| 95 |
+
|
| 96 |
+
def __init__(self, attention_store, place_in_unet, PnP, editing_prompts):
|
| 97 |
+
self.attnstore = attention_store
|
| 98 |
+
self.place_in_unet = place_in_unet
|
| 99 |
+
self.editing_prompts = editing_prompts
|
| 100 |
+
self.PnP = PnP
|
| 101 |
+
|
| 102 |
+
def __call__(
|
| 103 |
+
self,
|
| 104 |
+
attn: Attention,
|
| 105 |
+
hidden_states,
|
| 106 |
+
encoder_hidden_states=None,
|
| 107 |
+
attention_mask=None,
|
| 108 |
+
temb=None,
|
| 109 |
+
):
|
| 110 |
+
assert(not attn.residual_connection)
|
| 111 |
+
assert(attn.spatial_norm is None)
|
| 112 |
+
assert(attn.group_norm is None)
|
| 113 |
+
assert(hidden_states.ndim != 4)
|
| 114 |
+
assert(encoder_hidden_states is not None) # is cross
|
| 115 |
+
|
| 116 |
+
batch_size, sequence_length, _ = (
|
| 117 |
+
hidden_states.shape if encoder_hidden_states is None else encoder_hidden_states.shape
|
| 118 |
+
)
|
| 119 |
+
attention_mask = attn.prepare_attention_mask(attention_mask, sequence_length, batch_size)
|
| 120 |
+
|
| 121 |
+
query = attn.to_q(hidden_states)
|
| 122 |
+
|
| 123 |
+
if encoder_hidden_states is None:
|
| 124 |
+
encoder_hidden_states = hidden_states
|
| 125 |
+
elif attn.norm_cross:
|
| 126 |
+
encoder_hidden_states = attn.norm_encoder_hidden_states(encoder_hidden_states)
|
| 127 |
+
|
| 128 |
+
key = attn.to_k(encoder_hidden_states)
|
| 129 |
+
value = attn.to_v(encoder_hidden_states)
|
| 130 |
+
|
| 131 |
+
query = attn.head_to_batch_dim(query)
|
| 132 |
+
key = attn.head_to_batch_dim(key)
|
| 133 |
+
value = attn.head_to_batch_dim(value)
|
| 134 |
+
|
| 135 |
+
attention_probs = attn.get_attention_scores(query, key, attention_mask)
|
| 136 |
+
self.attnstore(attention_probs,
|
| 137 |
+
is_cross=True,
|
| 138 |
+
place_in_unet=self.place_in_unet,
|
| 139 |
+
editing_prompts=self.editing_prompts,
|
| 140 |
+
PnP=self.PnP)
|
| 141 |
+
|
| 142 |
+
hidden_states = torch.bmm(attention_probs, value)
|
| 143 |
+
hidden_states = attn.batch_to_head_dim(hidden_states)
|
| 144 |
+
|
| 145 |
+
# linear proj
|
| 146 |
+
hidden_states = attn.to_out[0](hidden_states)
|
| 147 |
+
# dropout
|
| 148 |
+
hidden_states = attn.to_out[1](hidden_states)
|
| 149 |
+
|
| 150 |
+
hidden_states = hidden_states / attn.rescale_output_factor
|
| 151 |
+
return hidden_states
|
| 152 |
+
|
| 153 |
+
# Modified from diffusers.pipelines.stable_diffusion.pipeline_stable_diffusion.StableDiffusionAttendAndExcitePipeline.GaussianSmoothing
|
| 154 |
+
class GaussianSmoothing():
|
| 155 |
+
|
| 156 |
+
def __init__(self, device):
|
| 157 |
+
kernel_size = [3, 3]
|
| 158 |
+
sigma = [0.5, 0.5]
|
| 159 |
+
|
| 160 |
+
# The gaussian kernel is the product of the gaussian function of each dimension.
|
| 161 |
+
kernel = 1
|
| 162 |
+
meshgrids = torch.meshgrid([torch.arange(size, dtype=torch.float32) for size in kernel_size])
|
| 163 |
+
for size, std, mgrid in zip(kernel_size, sigma, meshgrids):
|
| 164 |
+
mean = (size - 1) / 2
|
| 165 |
+
kernel *= 1 / (std * math.sqrt(2 * math.pi)) * torch.exp(-(((mgrid - mean) / (2 * std)) ** 2))
|
| 166 |
+
|
| 167 |
+
# Make sure sum of values in gaussian kernel equals 1.
|
| 168 |
+
kernel = kernel / torch.sum(kernel)
|
| 169 |
+
|
| 170 |
+
# Reshape to depthwise convolutional weight
|
| 171 |
+
kernel = kernel.view(1, 1, *kernel.size())
|
| 172 |
+
kernel = kernel.repeat(1, *[1] * (kernel.dim() - 1))
|
| 173 |
+
|
| 174 |
+
self.weight = kernel.to(device)
|
| 175 |
+
|
| 176 |
+
def __call__(self, input):
|
| 177 |
+
"""
|
| 178 |
+
Arguments:
|
| 179 |
+
Apply gaussian filter to input.
|
| 180 |
+
input (torch.Tensor): Input to apply gaussian filter on.
|
| 181 |
+
Returns:
|
| 182 |
+
filtered (torch.Tensor): Filtered output.
|
| 183 |
+
"""
|
| 184 |
+
return F.conv2d(input, weight=self.weight.to(input.dtype))
|
| 185 |
+
|
| 186 |
|
| 187 |
class SemanticStableDiffusionPipeline(DiffusionPipeline):
|
| 188 |
r"""
|
|
|
|
| 371 |
latents = latents * self.scheduler.init_noise_sigma
|
| 372 |
return latents
|
| 373 |
|
| 374 |
+
def prepare_unet(self, attention_store, PnP: bool):
|
| 375 |
+
attn_procs = {}
|
| 376 |
+
for name in self.unet.attn_processors.keys():
|
| 377 |
+
if name.startswith("mid_block"):
|
| 378 |
+
place_in_unet = "mid"
|
| 379 |
+
elif name.startswith("up_blocks"):
|
| 380 |
+
place_in_unet = "up"
|
| 381 |
+
elif name.startswith("down_blocks"):
|
| 382 |
+
place_in_unet = "down"
|
| 383 |
+
else:
|
| 384 |
+
continue
|
| 385 |
+
|
| 386 |
+
if "attn2" in name:
|
| 387 |
+
attn_procs[name] = CrossAttnProcessor(
|
| 388 |
+
attention_store=attention_store,
|
| 389 |
+
place_in_unet=place_in_unet,
|
| 390 |
+
PnP=PnP,
|
| 391 |
+
editing_prompts=self.enabled_editing_prompts)
|
| 392 |
+
else:
|
| 393 |
+
attn_procs[name] = AttnProcessor()
|
| 394 |
+
|
| 395 |
+
self.unet.set_attn_processor(attn_procs)
|
| 396 |
+
|
| 397 |
@torch.no_grad()
|
| 398 |
def __call__(
|
| 399 |
self,
|
|
|
|
| 422 |
edit_mom_beta: Optional[float] = 0.4,
|
| 423 |
edit_weights: Optional[List[float]] = None,
|
| 424 |
sem_guidance: Optional[List[torch.Tensor]] = None,
|
| 425 |
+
# masking
|
| 426 |
+
use_cross_attn_mask: bool = False,
|
| 427 |
+
use_intersect_mask: bool = True,
|
| 428 |
+
edit_tokens_for_attn_map: List[str] = None,
|
| 429 |
+
# Attention store (just for visualization purposes)
|
| 430 |
+
attn_store_steps: Optional[List[int]] = [],
|
| 431 |
+
store_averaged_over_steps: bool = True,
|
| 432 |
# DDPM additions
|
| 433 |
use_ddpm: bool = False,
|
| 434 |
wts: Optional[List[torch.Tensor]] = None,
|
|
|
|
| 527 |
second element is a list of `bool`s denoting whether the corresponding generated image likely represents
|
| 528 |
"not-safe-for-work" (nsfw) content, according to the `safety_checker`.
|
| 529 |
"""
|
| 530 |
+
if use_intersect_mask:
|
| 531 |
+
use_cross_attn_mask = True
|
| 532 |
+
|
| 533 |
+
if use_cross_attn_mask:
|
| 534 |
+
self.smoothing = GaussianSmoothing(self.device)
|
| 535 |
+
|
| 536 |
# 0. Default height and width to unet
|
| 537 |
height = height or self.unet.config.sample_size * self.vae_scale_factor
|
| 538 |
width = width or self.unet.config.sample_size * self.vae_scale_factor
|
|
|
|
| 547 |
enable_edit_guidance = True
|
| 548 |
if isinstance(editing_prompt, str):
|
| 549 |
editing_prompt = [editing_prompt]
|
| 550 |
+
self.enabled_editing_prompts = len(editing_prompt)
|
| 551 |
elif editing_prompt_embeddings is not None:
|
| 552 |
enable_edit_guidance = True
|
| 553 |
+
self.enabled_editing_prompts = editing_prompt_embeddings.shape[0]
|
| 554 |
else:
|
| 555 |
+
self.enabled_editing_prompts = 0
|
| 556 |
enable_edit_guidance = False
|
| 557 |
|
| 558 |
# get prompt text embeddings
|
|
|
|
| 560 |
prompt,
|
| 561 |
padding="max_length",
|
| 562 |
max_length=self.tokenizer.model_max_length,
|
| 563 |
+
truncation=True,
|
| 564 |
return_tensors="pt",
|
| 565 |
)
|
| 566 |
text_input_ids = text_inputs.input_ids
|
| 567 |
+
untruncated_ids = self.tokenizer(prompt, padding="longest", return_tensors="pt").input_ids
|
| 568 |
|
| 569 |
+
if untruncated_ids.shape[-1] >= text_input_ids.shape[-1] and not torch.equal(
|
| 570 |
+
text_input_ids, untruncated_ids
|
| 571 |
+
):
|
| 572 |
+
removed_text = self.tokenizer.batch_decode(
|
| 573 |
+
untruncated_ids[:, self.tokenizer.model_max_length - 1 : -1]
|
| 574 |
+
)
|
| 575 |
logger.warning(
|
| 576 |
"The following part of your input was truncated because CLIP can only handle sequences up to"
|
| 577 |
f" {self.tokenizer.model_max_length} tokens: {removed_text}"
|
| 578 |
)
|
| 579 |
+
|
| 580 |
text_embeddings = self.text_encoder(text_input_ids.to(self.device))[0]
|
| 581 |
|
| 582 |
# duplicate text embeddings for each generation per prompt, using mps friendly method
|
|
|
|
| 587 |
if enable_edit_guidance:
|
| 588 |
# get safety text embeddings
|
| 589 |
if editing_prompt_embeddings is None:
|
| 590 |
+
if edit_tokens_for_attn_map is not None:
|
| 591 |
+
edit_tokens = [[word.replace("</w>", "") for word in self.tokenizer.tokenize(item)] for item in editing_prompt]
|
| 592 |
+
#print(f"edit_tokens: {edit_tokens}")
|
| 593 |
+
|
| 594 |
edit_concepts_input = self.tokenizer(
|
| 595 |
[x for item in editing_prompt for x in repeat(item, batch_size)],
|
| 596 |
padding="max_length",
|
| 597 |
max_length=self.tokenizer.model_max_length,
|
| 598 |
+
truncation=True,
|
| 599 |
return_tensors="pt",
|
| 600 |
+
return_length=True
|
| 601 |
)
|
| 602 |
|
| 603 |
+
num_edit_tokens = edit_concepts_input.length -2 # not counting startoftext and endoftext
|
| 604 |
edit_concepts_input_ids = edit_concepts_input.input_ids
|
| 605 |
+
untruncated_ids = self.tokenizer(
|
| 606 |
+
[x for item in editing_prompt for x in repeat(item, batch_size)],
|
| 607 |
+
padding="longest",
|
| 608 |
+
return_tensors="pt").input_ids
|
| 609 |
|
| 610 |
+
if untruncated_ids.shape[-1] >= edit_concepts_input_ids.shape[-1] and not torch.equal(
|
| 611 |
+
edit_concepts_input_ids, untruncated_ids
|
| 612 |
+
):
|
| 613 |
removed_text = self.tokenizer.batch_decode(
|
| 614 |
+
untruncated_ids[:, self.tokenizer.model_max_length - 1 : -1]
|
| 615 |
)
|
| 616 |
logger.warning(
|
| 617 |
"The following part of your input was truncated because CLIP can only handle sequences up to"
|
| 618 |
f" {self.tokenizer.model_max_length} tokens: {removed_text}"
|
| 619 |
)
|
| 620 |
+
|
| 621 |
edit_concepts = self.text_encoder(edit_concepts_input_ids.to(self.device))[0]
|
| 622 |
else:
|
| 623 |
edit_concepts = editing_prompt_embeddings.to(self.device).repeat(batch_size, 1, 1)
|
|
|
|
| 671 |
# For classifier free guidance, we need to do two forward passes.
|
| 672 |
# Here we concatenate the unconditional and text embeddings into a single batch
|
| 673 |
# to avoid doing two forward passes
|
| 674 |
+
self.text_cross_attention_maps = [prompt] if isinstance(prompt, str) else prompt
|
| 675 |
if enable_edit_guidance:
|
| 676 |
text_embeddings = torch.cat([uncond_embeddings, text_embeddings, edit_concepts])
|
| 677 |
+
self.text_cross_attention_maps += \
|
| 678 |
+
([editing_prompt] if isinstance(editing_prompt, str) else editing_prompt)
|
| 679 |
else:
|
| 680 |
text_embeddings = torch.cat([uncond_embeddings, text_embeddings])
|
| 681 |
# get the initial random noise unless the user supplied it
|
|
|
|
| 687 |
t_to_idx = {int(v):k for k,v in enumerate(timesteps[-zs.shape[0]:])}
|
| 688 |
timesteps = timesteps[-zs.shape[0]:]
|
| 689 |
|
| 690 |
+
self.attention_store = AttentionStore(average=store_averaged_over_steps)
|
| 691 |
+
self.prepare_unet(self.attention_store, False)
|
| 692 |
+
|
| 693 |
# 5. Prepare latent variables
|
| 694 |
num_channels_latents = self.unet.config.in_channels
|
| 695 |
latents = self.prepare_latents(
|
|
|
|
| 717 |
for i, t in enumerate(self.progress_bar(timesteps)):
|
| 718 |
# expand the latents if we are doing classifier free guidance
|
| 719 |
latent_model_input = (
|
| 720 |
+
torch.cat([latents] * (2 + self.enabled_editing_prompts)) if do_classifier_free_guidance else latents
|
| 721 |
)
|
| 722 |
latent_model_input = self.scheduler.scale_model_input(latent_model_input, t)
|
| 723 |
|
|
|
|
| 726 |
|
| 727 |
# perform guidance
|
| 728 |
if do_classifier_free_guidance:
|
| 729 |
+
noise_pred_out = noise_pred.chunk(2 + self.enabled_editing_prompts) # [b,4, 64, 64]
|
| 730 |
noise_pred_uncond, noise_pred_text = noise_pred_out[0], noise_pred_out[1]
|
| 731 |
noise_pred_edit_concepts = noise_pred_out[2:]
|
| 732 |
|
|
|
|
| 813 |
|
| 814 |
noise_guidance_edit_tmp = noise_guidance_edit_tmp * edit_guidance_scale_c
|
| 815 |
|
| 816 |
+
if use_cross_attn_mask:
|
| 817 |
+
out = self.attention_store.aggregate_attention(
|
| 818 |
+
attention_maps=self.attention_store.step_store,
|
| 819 |
+
prompts=self.text_cross_attention_maps,
|
| 820 |
+
res=16,
|
| 821 |
+
from_where=["up","down"],
|
| 822 |
+
is_cross=True,
|
| 823 |
+
select=self.text_cross_attention_maps.index(editing_prompt[c]),
|
| 824 |
)
|
| 825 |
+
|
| 826 |
+
attn_map = out[:, :, 1:] # 0 -> startoftext
|
| 827 |
+
attn_map *= 100
|
| 828 |
+
attn_map = torch.nn.functional.softmax(attn_map, dim=-1)
|
| 829 |
+
attn_map = attn_map[:,:,:num_edit_tokens[c]] # -1 -> endoftext
|
| 830 |
+
|
| 831 |
+
assert(attn_map.shape[2]==num_edit_tokens[c])
|
| 832 |
+
if edit_tokens_for_attn_map is not None:
|
| 833 |
+
# select attn_map for specified tokens
|
| 834 |
+
token_idx = [edit_tokens[c].index(item) for item in edit_tokens_for_attn_map[c]]
|
| 835 |
+
attn_map = attn_map[:,:,token_idx]
|
| 836 |
+
assert(attn_map.shape[2] == len(edit_tokens_for_attn_map[c]))
|
| 837 |
+
|
| 838 |
+
# average over tokens
|
| 839 |
+
attn_map = torch.sum(attn_map, dim=2)
|
| 840 |
+
|
| 841 |
+
# gaussian_smoothing
|
| 842 |
+
attn_map = F.pad(attn_map.unsqueeze(0).unsqueeze(0), (1, 1, 1, 1), mode="reflect")
|
| 843 |
+
attn_map = self.smoothing(attn_map).squeeze(0).squeeze(0)
|
| 844 |
+
|
| 845 |
+
# torch.quantile function expects float32
|
| 846 |
+
if attn_map.dtype == torch.float32:
|
| 847 |
+
tmp = torch.quantile(
|
| 848 |
+
attn_map.flatten(),
|
| 849 |
+
edit_threshold_c
|
| 850 |
+
)
|
| 851 |
+
else:
|
| 852 |
+
tmp = torch.quantile(
|
| 853 |
+
attn_map.flatten().to(torch.float32),
|
| 854 |
+
edit_threshold_c
|
| 855 |
+
).to(attn_map.dtype)
|
| 856 |
+
|
| 857 |
+
attn_mask = torch.where(attn_map >= tmp, 1.0, 0.0)
|
| 858 |
+
|
| 859 |
+
# resolution must match latent space dimension
|
| 860 |
+
attn_mask = F.interpolate(
|
| 861 |
+
attn_mask.unsqueeze(0).unsqueeze(0),
|
| 862 |
+
noise_guidance_edit_tmp.shape[-2:] # 64,64
|
| 863 |
+
)[0,0,:,:]
|
| 864 |
+
|
| 865 |
+
if not use_intersect_mask:
|
| 866 |
+
noise_guidance_edit_tmp = noise_guidance_edit_tmp * attn_mask
|
| 867 |
+
|
| 868 |
+
if use_intersect_mask:
|
| 869 |
+
noise_guidance_edit_tmp_quantile = torch.abs(noise_guidance_edit_tmp)
|
| 870 |
+
noise_guidance_edit_tmp_quantile = torch.sum(noise_guidance_edit_tmp_quantile, dim=1, keepdim=True)
|
| 871 |
+
noise_guidance_edit_tmp_quantile = noise_guidance_edit_tmp_quantile.repeat(1,4,1,1)
|
| 872 |
+
|
| 873 |
+
if noise_guidance_edit_tmp_quantile.dtype == torch.float32:
|
| 874 |
+
tmp = torch.quantile(
|
| 875 |
+
noise_guidance_edit_tmp_quantile.flatten(start_dim=2),
|
| 876 |
+
edit_threshold_c,
|
| 877 |
+
dim=2,
|
| 878 |
+
keepdim=False,
|
| 879 |
+
)
|
| 880 |
+
else:
|
| 881 |
+
tmp = torch.quantile(
|
| 882 |
+
noise_guidance_edit_tmp_quantile.flatten(start_dim=2).to(torch.float32),
|
| 883 |
+
edit_threshold_c,
|
| 884 |
+
dim=2,
|
| 885 |
+
keepdim=False,
|
| 886 |
+
).to(noise_guidance_edit_tmp_quantile.dtype)
|
| 887 |
+
|
| 888 |
+
sega_mask = torch.where(
|
| 889 |
+
noise_guidance_edit_tmp_quantile >= tmp[:, :, None, None],
|
| 890 |
+
torch.ones_like(noise_guidance_edit_tmp),
|
| 891 |
+
torch.zeros_like(noise_guidance_edit_tmp),
|
| 892 |
+
)
|
| 893 |
+
|
| 894 |
+
intersect_mask = sega_mask * attn_mask
|
| 895 |
+
noise_guidance_edit_tmp = noise_guidance_edit_tmp * intersect_mask
|
| 896 |
+
|
| 897 |
+
elif not use_cross_attn_mask:
|
| 898 |
+
# calculate quantile
|
| 899 |
+
noise_guidance_edit_tmp_quantile = torch.abs(noise_guidance_edit_tmp)
|
| 900 |
+
noise_guidance_edit_tmp_quantile = torch.sum(noise_guidance_edit_tmp_quantile, dim=1, keepdim=True)
|
| 901 |
+
noise_guidance_edit_tmp_quantile = noise_guidance_edit_tmp_quantile.repeat(1,4,1,1)
|
| 902 |
+
|
| 903 |
+
# torch.quantile function expects float32
|
| 904 |
+
if noise_guidance_edit_tmp_quantile.dtype == torch.float32:
|
| 905 |
+
tmp = torch.quantile(
|
| 906 |
+
noise_guidance_edit_tmp_quantile.flatten(start_dim=2),
|
| 907 |
+
edit_threshold_c,
|
| 908 |
+
dim=2,
|
| 909 |
+
keepdim=False,
|
| 910 |
+
)
|
| 911 |
+
else:
|
| 912 |
+
tmp = torch.quantile(
|
| 913 |
+
noise_guidance_edit_tmp_quantile.flatten(start_dim=2).to(torch.float32),
|
| 914 |
+
edit_threshold_c,
|
| 915 |
+
dim=2,
|
| 916 |
+
keepdim=False,
|
| 917 |
+
).to(noise_guidance_edit_tmp_quantile.dtype)
|
| 918 |
+
|
| 919 |
+
noise_guidance_edit_tmp = torch.where(
|
| 920 |
+
noise_guidance_edit_tmp_quantile >= tmp[:, :, None, None],
|
| 921 |
+
noise_guidance_edit_tmp,
|
| 922 |
+
torch.zeros_like(noise_guidance_edit_tmp),
|
| 923 |
+
)
|
| 924 |
+
|
| 925 |
noise_guidance_edit[c, :, :, :, :] = noise_guidance_edit_tmp
|
| 926 |
|
| 927 |
# noise_guidance_edit = noise_guidance_edit + noise_guidance_edit_tmp
|
|
|
|
| 1024 |
else: #if not use_ddpm:
|
| 1025 |
latents = self.scheduler.step(noise_pred, t, latents, **extra_step_kwargs).prev_sample
|
| 1026 |
|
| 1027 |
+
# step callback
|
| 1028 |
+
store_step = i in attn_store_steps
|
| 1029 |
+
if store_step:
|
| 1030 |
+
print("storing attention")
|
| 1031 |
+
self.attention_store.between_steps(store_step)
|
| 1032 |
+
|
| 1033 |
# call the callback, if provided
|
| 1034 |
if callback is not None and i % callback_steps == 0:
|
| 1035 |
callback(i, t, latents)
|