hackathon-2025 / app.py
Andre Embury
Update main app
ea33a01 unverified
raw
history blame
5.9 kB
import gradio as gr
import numpy as np
# import random
# import spaces #[uncomment to use ZeroGPU]
from diffusers import (
StableDiffusionControlNetImg2ImgPipeline,
ControlNetModel,
)
import torch
import requests
from fastapi import FastAPI, HTTPException
from PIL import Image
from controlnet_aux import CannyDetector
device = "cuda" if torch.cuda.is_available() else "cpu"
# model_repo_id = "stabilityai/sdxl-turbo" # Replace to the model you would like to use
model_repo_id = "runwayml/stable-diffusion-v1-5"
if torch.cuda.is_available():
torch_dtype = torch.float16
else:
torch_dtype = torch.float32
controlnet = ControlNetModel.from_pretrained(
"lllyasviel/sd-controlnet-canny", torch_dtype=torch.float32
)
# pipe = DiffusionPipeline.from_pretrained(model_repo_id, torch_dtype=torch_dtype)
pipe = StableDiffusionControlNetImg2ImgPipeline.from_pretrained(
model_repo_id,
controlnet=controlnet,
torch_dtype=torch_dtype,
).to(device)
pipe = pipe.to(device)
canny = CannyDetector()
MAX_SEED = np.iinfo(np.int32).max
MAX_IMAGE_SIZE = 1024
# @spaces.GPU #[uncomment to use ZeroGPU]
def infer(
image_url,
# negative_prompt,
# seed,
# randomize_seed,
width,
height,
guidance_scale,
num_inference_steps,
progress=gr.Progress(track_tqdm=True),
):
# if randomize_seed:
# seed = random.randint(0, MAX_SEED)
# generator = torch.Generator().manual_seed(seed)
# image = pipe(
# prompt=prompt,
# negative_prompt=negative_prompt,
# guidance_scale=guidance_scale,
# num_inference_steps=num_inference_steps,
# width=width,
# height=height,
# generator=generator,
# ).images[0]
# return image, seed
width = int(width)
height = int(height)
try:
resp = requests.get(image_url)
resp.raise_for_status()
except Exception as e:
raise HTTPException(400, f"Could not download image: {e}")
# img = Image.open(io.BytesIO(resp.content)).convert("RGB")
img = Image.open(requests.get(image_url, stream=True).raw).convert("RGB")
# img = img.resize((req.width, req.height))
img = img.resize((width, height))
control_net_image = canny(img).resize((width, height))
prompt = (
"redraw the logo from scratch, clean sharp vector-style, "
# + STYLE_PROMPTS[req.style_preset]
)
output = pipe(
prompt=prompt,
negative_prompt=NEGATIVE,
image=img,
control_image=control_net_image,
# strength=req.strength,
guidance_scale=guidance_scale,
num_inference_steps=num_inference_steps,
height=height,
width=width,
).images[0]
return output
examples = [
"Astronaut in a jungle, cold color palette, muted colors, detailed, 8k",
"An astronaut riding a green horse",
"A delicious ceviche cheesecake slice",
]
css = """
#col-container {
margin: 0 auto;
max-width: 640px;
}
"""
NEGATIVE = "blurry, distorted, messy, gradients, background noise"
WIDTH = 512
HEIGHT = 512
with gr.Blocks(css=css) as demo:
with gr.Column(elem_id="col-container"):
gr.Markdown(" # Text-to-Image Gradio Template")
with gr.Row():
image_url = gr.Text(
label="Image URL",
show_label=False,
# max_lines=1,
placeholder="Provide a image URL",
container=False,
)
run_button = gr.Button("Run", scale=0, variant="primary")
result = gr.Image(label="Result", show_label=False)
with gr.Accordion("Advanced Settings", open=False):
negative_prompt = gr.Label(
label="Negative prompts",
# max_lines=1,
value=NEGATIVE,
visible=True,
)
# seed = gr.Slider(
# label="Seed",
# minimum=0,
# maximum=MAX_SEED,
# step=1,
# value=0,
# )
# randomize_seed = gr.Checkbox(label="Randomize seed", value=True)
with gr.Row():
width = gr.Label(
label="Width",
value=WIDTH,
# minimum=256,
# maximum=MAX_IMAGE_SIZE,
# step=32,
# value=1024, # Replace with defaults that work for your model
)
height = gr.Label(
label="Height",
value=HEIGHT,
# minimum=256,
# maximum=MAX_IMAGE_SIZE,
# step=32,
# value=1024, # Replace with defaults that work for your model
)
with gr.Row():
guidance_scale = gr.Slider(
label="Guidance scale",
minimum=0.0,
maximum=10.0,
step=0.1,
value=8.5, # Replace with defaults that work for your model
)
num_inference_steps = gr.Slider(
label="Number of inference steps",
minimum=1,
maximum=50,
step=1,
value=25, # Replace with defaults that work for your model
)
# gr.Examples(examples=examples, inputs=[prompt])
gr.on(
triggers=[run_button.click, image_url.submit],
fn=infer,
inputs=[
image_url,
# negative_prompt,
# seed,
# randomize_seed,
width,
height,
guidance_scale,
num_inference_steps,
],
outputs=[
result,
# seed,
],
)
if __name__ == "__main__":
demo.launch()