apiHunyuan3d / hy3dgen /texgen /pipelines.py
staswrs
git and hf files
514160d
# Hunyuan 3D is licensed under the TENCENT HUNYUAN NON-COMMERCIAL LICENSE AGREEMENT
# except for the third-party components listed below.
# Hunyuan 3D does not impose any additional limitations beyond what is outlined
# in the repsective licenses of these third-party components.
# Users must comply with all terms and conditions of original licenses of these third-party
# components and must ensure that the usage of the third party components adheres to
# all relevant laws and regulations.
# For avoidance of doubts, Hunyuan 3D means the large language models and
# their software and algorithms, including trained model weights, parameters (including
# optimizer states), machine-learning model code, inference-enabling code, training-enabling code,
# fine-tuning enabling code and other elements of the foregoing made publicly available
# by Tencent in accordance with TENCENT HUNYUAN COMMUNITY LICENSE AGREEMENT.
import logging
import numpy as np
import os
import torch
from PIL import Image
from typing import List, Union, Optional
from .differentiable_renderer.mesh_render import MeshRender
from .utils.dehighlight_utils import Light_Shadow_Remover
from .utils.multiview_utils import Multiview_Diffusion_Net
from .utils.imagesuper_utils import Image_Super_Net
from .utils.uv_warp_utils import mesh_uv_wrap
logger = logging.getLogger(__name__)
class Hunyuan3DTexGenConfig:
def __init__(self, light_remover_ckpt_path, multiview_ckpt_path, subfolder_name):
self.device = 'cuda'
self.light_remover_ckpt_path = light_remover_ckpt_path
self.multiview_ckpt_path = multiview_ckpt_path
self.candidate_camera_azims = [0, 90, 180, 270, 0, 180]
self.candidate_camera_elevs = [0, 0, 0, 0, 90, -90]
self.candidate_view_weights = [1, 0.1, 0.5, 0.1, 0.05, 0.05]
self.render_size = 2048
self.texture_size = 2048
self.bake_exp = 4
self.merge_method = 'fast'
self.pipe_dict = {'hunyuan3d-paint-v2-0': 'hunyuanpaint', 'hunyuan3d-paint-v2-0-turbo': 'hunyuanpaint-turbo'}
self.pipe_name = self.pipe_dict[subfolder_name]
class Hunyuan3DPaintPipeline:
@classmethod
def from_pretrained(cls, model_path, subfolder='hunyuan3d-paint-v2-0-turbo'):
original_model_path = model_path
if not os.path.exists(model_path):
# try local path
base_dir = os.environ.get('HY3DGEN_MODELS', '~/.cache/hy3dgen')
model_path = os.path.expanduser(os.path.join(base_dir, model_path))
delight_model_path = os.path.join(model_path, 'hunyuan3d-delight-v2-0')
multiview_model_path = os.path.join(model_path, subfolder)
if not os.path.exists(delight_model_path) or not os.path.exists(multiview_model_path):
try:
import huggingface_hub
# download from huggingface
model_path = huggingface_hub.snapshot_download(
repo_id=original_model_path, allow_patterns=["hunyuan3d-delight-v2-0/*"]
)
model_path = huggingface_hub.snapshot_download(
repo_id=original_model_path, allow_patterns=[f'{subfolder}/*']
)
delight_model_path = os.path.join(model_path, 'hunyuan3d-delight-v2-0')
multiview_model_path = os.path.join(model_path, subfolder)
return cls(Hunyuan3DTexGenConfig(delight_model_path, multiview_model_path, subfolder))
except ImportError:
logger.warning(
"You need to install HuggingFace Hub to load models from the hub."
)
raise RuntimeError(f"Model path {model_path} not found")
else:
return cls(Hunyuan3DTexGenConfig(delight_model_path, multiview_model_path, subfolder))
raise FileNotFoundError(f"Model path {original_model_path} not found and we could not find it at huggingface")
def __init__(self, config):
self.config = config
self.models = {}
self.render = MeshRender(
default_resolution=self.config.render_size,
texture_size=self.config.texture_size)
self.load_models()
def load_models(self):
# empty cude cache
torch.cuda.empty_cache()
# Load model
self.models['delight_model'] = Light_Shadow_Remover(self.config)
self.models['multiview_model'] = Multiview_Diffusion_Net(self.config)
# self.models['super_model'] = Image_Super_Net(self.config)
def enable_model_cpu_offload(self, gpu_id: Optional[int] = None, device: Union[torch.device, str] = "cuda"):
self.models['delight_model'].pipeline.enable_model_cpu_offload(gpu_id=gpu_id, device=device)
self.models['multiview_model'].pipeline.enable_model_cpu_offload(gpu_id=gpu_id, device=device)
def render_normal_multiview(self, camera_elevs, camera_azims, use_abs_coor=True):
normal_maps = []
for elev, azim in zip(camera_elevs, camera_azims):
normal_map = self.render.render_normal(
elev, azim, use_abs_coor=use_abs_coor, return_type='pl')
normal_maps.append(normal_map)
return normal_maps
def render_position_multiview(self, camera_elevs, camera_azims):
position_maps = []
for elev, azim in zip(camera_elevs, camera_azims):
position_map = self.render.render_position(
elev, azim, return_type='pl')
position_maps.append(position_map)
return position_maps
def bake_from_multiview(self, views, camera_elevs,
camera_azims, view_weights, method='graphcut'):
project_textures, project_weighted_cos_maps = [], []
project_boundary_maps = []
for view, camera_elev, camera_azim, weight in zip(
views, camera_elevs, camera_azims, view_weights):
project_texture, project_cos_map, project_boundary_map = self.render.back_project(
view, camera_elev, camera_azim)
project_cos_map = weight * (project_cos_map ** self.config.bake_exp)
project_textures.append(project_texture)
project_weighted_cos_maps.append(project_cos_map)
project_boundary_maps.append(project_boundary_map)
if method == 'fast':
texture, ori_trust_map = self.render.fast_bake_texture(
project_textures, project_weighted_cos_maps)
else:
raise f'no method {method}'
return texture, ori_trust_map > 1E-8
def texture_inpaint(self, texture, mask):
texture_np = self.render.uv_inpaint(texture, mask)
texture = torch.tensor(texture_np / 255).float().to(texture.device)
return texture
def recenter_image(self, image, border_ratio=0.2):
if image.mode == 'RGB':
return image
elif image.mode == 'L':
image = image.convert('RGB')
return image
alpha_channel = np.array(image)[:, :, 3]
non_zero_indices = np.argwhere(alpha_channel > 0)
if non_zero_indices.size == 0:
raise ValueError("Image is fully transparent")
min_row, min_col = non_zero_indices.min(axis=0)
max_row, max_col = non_zero_indices.max(axis=0)
cropped_image = image.crop((min_col, min_row, max_col + 1, max_row + 1))
width, height = cropped_image.size
border_width = int(width * border_ratio)
border_height = int(height * border_ratio)
new_width = width + 2 * border_width
new_height = height + 2 * border_height
square_size = max(new_width, new_height)
new_image = Image.new('RGBA', (square_size, square_size), (255, 255, 255, 0))
paste_x = (square_size - new_width) // 2 + border_width
paste_y = (square_size - new_height) // 2 + border_height
new_image.paste(cropped_image, (paste_x, paste_y))
return new_image
@torch.no_grad()
def __call__(self, mesh, image):
if not isinstance(image, List):
image = [image]
images_prompt = []
for i in range(len(image)):
if isinstance(image[i], str):
image_prompt = Image.open(image[i])
else:
image_prompt = image[i]
images_prompt.append(image_prompt)
images_prompt = [self.recenter_image(image_prompt) for image_prompt in images_prompt]
images_prompt = [self.models['delight_model'](image_prompt) for image_prompt in images_prompt]
mesh = mesh_uv_wrap(mesh)
self.render.load_mesh(mesh)
selected_camera_elevs, selected_camera_azims, selected_view_weights = \
self.config.candidate_camera_elevs, self.config.candidate_camera_azims, self.config.candidate_view_weights
normal_maps = self.render_normal_multiview(
selected_camera_elevs, selected_camera_azims, use_abs_coor=True)
position_maps = self.render_position_multiview(
selected_camera_elevs, selected_camera_azims)
camera_info = [(((azim // 30) + 9) % 12) // {-20: 1, 0: 1, 20: 1, -90: 3, 90: 3}[
elev] + {-20: 0, 0: 12, 20: 24, -90: 36, 90: 40}[elev] for azim, elev in
zip(selected_camera_azims, selected_camera_elevs)]
multiviews = self.models['multiview_model'](images_prompt, normal_maps + position_maps, camera_info)
for i in range(len(multiviews)):
# multiviews[i] = self.models['super_model'](multiviews[i])
multiviews[i] = multiviews[i].resize(
(self.config.render_size, self.config.render_size))
texture, mask = self.bake_from_multiview(multiviews,
selected_camera_elevs, selected_camera_azims, selected_view_weights,
method=self.config.merge_method)
mask_np = (mask.squeeze(-1).cpu().numpy() * 255).astype(np.uint8)
texture = self.texture_inpaint(texture, mask_np)
self.render.set_texture(texture)
textured_mesh = self.render.save_mesh()
return textured_mesh