Spaces:
Sleeping
Sleeping
| # import os | |
| # import subprocess | |
| # # Убираем pyenv, если вдруг остался .python-version | |
| # os.environ.pop("PYENV_VERSION", None) | |
| # # Установка зависимостей | |
| # subprocess.run(["pip", "install", "torch", "wheel"], check=True) | |
| # subprocess.run([ | |
| # "pip", "install", "--no-build-isolation", | |
| # "diso@git+https://github.com/SarahWeiii/diso.git" | |
| # ], check=True) | |
| # # Импорты | |
| # import gradio as gr | |
| # import uuid | |
| # import torch | |
| # import zipfile | |
| # import requests | |
| # import traceback | |
| # import trimesh | |
| # from trimesh.exchange.gltf import export_glb | |
| # print("Trimesh version:", trimesh.__version__) | |
| # from inference_triposg import run_triposg | |
| # from triposg.pipelines.pipeline_triposg import TripoSGPipeline | |
| # from briarmbg import BriaRMBG | |
| # # Настройки устройства | |
| # device = "cuda" if torch.cuda.is_available() else "cpu" | |
| # dtype = torch.float16 if device == "cuda" else torch.float32 | |
| # # Загрузка весов | |
| # weights_dir = "pretrained_weights" | |
| # triposg_path = os.path.join(weights_dir, "TripoSG") | |
| # rmbg_path = os.path.join(weights_dir, "RMBG-1.4") | |
| # if not (os.path.exists(triposg_path) and os.path.exists(rmbg_path)): | |
| # print("📦 Downloading pretrained weights...") | |
| # url = "https://huggingface.co/datasets/endlesstools/pretrained-assets/resolve/main/pretrained_models.zip" | |
| # zip_path = "pretrained_models.zip" | |
| # with requests.get(url, stream=True) as r: | |
| # r.raise_for_status() | |
| # with open(zip_path, "wb") as f: | |
| # for chunk in r.iter_content(chunk_size=8192): | |
| # f.write(chunk) | |
| # print("📦 Extracting weights...") | |
| # with zipfile.ZipFile(zip_path, "r") as zip_ref: | |
| # zip_ref.extractall(weights_dir) | |
| # os.remove(zip_path) | |
| # print("✅ Weights ready.") | |
| # # Загрузка моделей | |
| # pipe = TripoSGPipeline.from_pretrained(triposg_path).to(device, dtype) | |
| # rmbg_net = BriaRMBG.from_pretrained(rmbg_path).to(device) | |
| # rmbg_net.eval() | |
| # # Генерация .glb | |
| # # def generate(image_path): | |
| # def generate(image_path, face_number=50000, guidance_scale=5.0, num_steps=25): | |
| # print("[API CALL] image_path received:", image_path) | |
| # print("[API CALL] File exists:", os.path.exists(image_path)) | |
| # temp_id = str(uuid.uuid4()) | |
| # output_path = f"/tmp/{temp_id}.glb" | |
| # print("[DEBUG] Generating mesh from:", image_path) | |
| # try: | |
| # # mesh = run_triposg( | |
| # # pipe=pipe, | |
| # # image_input=image_path, | |
| # # rmbg_net=rmbg_net, | |
| # # seed=42, | |
| # # num_inference_steps=25, | |
| # # guidance_scale=5.0, | |
| # # faces=-1, | |
| # # ) | |
| # mesh = run_triposg( | |
| # pipe=pipe, | |
| # image_input=image_path, | |
| # rmbg_net=rmbg_net, | |
| # seed=42, | |
| # num_inference_steps=int(num_steps), | |
| # guidance_scale=float(guidance_scale), | |
| # faces=int(face_number), | |
| # ) | |
| # # if mesh is None: | |
| # # raise ValueError("Mesh generation failed") | |
| # # mesh.export(output_path) | |
| # # print(f"[DEBUG] Mesh saved to {output_path}") | |
| # # return output_path if os.path.exists(output_path) else "Error: output file not found" | |
| # # if mesh is None: | |
| # # raise ValueError("Mesh generation failed") | |
| # # # Убираем визуал, метаданные, обертки | |
| # # mesh.visual = None | |
| # # mesh.metadata.clear() | |
| # # mesh.name = "endless_tools" | |
| # # # Экспорт только геометрии | |
| # # glb_data = mesh.export(file_type="glb") | |
| # # with open(output_path, "wb") as f: | |
| # # f.write(glb_data) | |
| # # print(f"[DEBUG] Mesh saved to {output_path}") | |
| # # return output_path if os.path.exists(output_path) else "Error: output file not found" | |
| # if mesh is None: | |
| # raise ValueError("Mesh generation returned None") | |
| # # Очистка визуала, метаданных и имени | |
| # mesh.visual = None | |
| # mesh.metadata.clear() | |
| # mesh.name = "geometry_0" | |
| # # glb_data = mesh.export(file_type="glb") | |
| # glb_data = export_glb(mesh) | |
| # with open(output_path, "wb") as f: | |
| # f.write(glb_data) | |
| # # Экспорт .glb вручную (иначе Trimesh добавляет сцену) | |
| # # glb_data = mesh.export(file_type="glb") | |
| # # with open(output_path, "wb") as f: | |
| # # f.write(glb_data) | |
| # print(f"[DEBUG] Mesh saved to {output_path}") | |
| # return output_path if os.path.exists(output_path) else None | |
| # # except Exception as e: | |
| # # print("[ERROR]", e) | |
| # # return f"Error: {e}" | |
| # except Exception as e: | |
| # # import traceback | |
| # print("[ERROR]", e) | |
| # traceback.print_exc() # ← выведет полную трассировку в логи | |
| # return f"Error: {e}" | |
| # # Интерфейс Gradio | |
| # demo = gr.Interface( | |
| # fn=generate, | |
| # inputs=gr.Image(type="filepath", label="Upload image"), | |
| # outputs=gr.File(label="Download .glb"), | |
| # title="TripoSG Image to 3D", | |
| # description="Upload an image to generate a 3D model (.glb)", | |
| # ) | |
| # # Запуск | |
| # demo.launch() | |
| import os | |
| import subprocess | |
| # Убираем pyenv | |
| os.environ.pop("PYENV_VERSION", None) | |
| # Установка зависимостей | |
| subprocess.run(["pip", "install", "torch", "wheel"], check=True) | |
| subprocess.run([ | |
| "pip", "install", "--no-build-isolation", | |
| "diso@git+https://github.com/SarahWeiii/diso.git" | |
| ], check=True) | |
| # Импорты (перенесены после установки зависимостей) | |
| import gradio as gr | |
| import uuid | |
| import torch | |
| import zipfile | |
| import requests | |
| import traceback | |
| import trimesh | |
| from trimesh.exchange.gltf import export_glb | |
| from inference_triposg import run_triposg | |
| from triposg.pipelines.pipeline_triposg import TripoSGPipeline | |
| from briarmbg import BriaRMBG | |
| print("Trimesh version:", trimesh.__version__) | |
| # Настройки устройства | |
| device = "cuda" if torch.cuda.is_available() else "cpu" | |
| dtype = torch.float16 if device == "cuda" else torch.float32 | |
| # Загрузка весов | |
| weights_dir = "pretrained_weights" | |
| triposg_path = os.path.join(weights_dir, "TripoSG") | |
| rmbg_path = os.path.join(weights_dir, "RMBG-1.4") | |
| if not (os.path.exists(triposg_path) and os.path.exists(rmbg_path)): | |
| print("📦 Downloading pretrained weights...") | |
| url = "https://huggingface.co/datasets/endlesstools/pretrained-assets/resolve/main/pretrained_models.zip" | |
| zip_path = "pretrained_models.zip" | |
| with requests.get(url, stream=True) as r: | |
| r.raise_for_status() | |
| with open(zip_path, "wb") as f: | |
| for chunk in r.iter_content(chunk_size=8192): | |
| f.write(chunk) | |
| print("📦 Extracting weights...") | |
| with zipfile.ZipFile(zip_path, "r") as zip_ref: | |
| zip_ref.extractall(weights_dir) | |
| os.remove(zip_path) | |
| print("✅ Weights ready.") | |
| # Загрузка моделей | |
| pipe = TripoSGPipeline.from_pretrained(triposg_path).to(device, dtype) | |
| rmbg_net = BriaRMBG.from_pretrained(rmbg_path).to(device) | |
| rmbg_net.eval() | |
| # Генерация .glb | |
| def generate(image_path, face_number=50000, guidance_scale=5.0, num_steps=25): | |
| print("[API CALL] image_path received:", image_path) | |
| print("[API CALL] File exists:", os.path.exists(image_path)) | |
| temp_id = str(uuid.uuid4()) | |
| output_path = f"/tmp/{temp_id}.glb" | |
| print("[DEBUG] Generating mesh from:", image_path) | |
| try: | |
| mesh = run_triposg( | |
| pipe=pipe, | |
| image_input=image_path, | |
| rmbg_net=rmbg_net, | |
| seed=42, | |
| num_inference_steps=int(num_steps), | |
| guidance_scale=float(guidance_scale), | |
| faces=int(face_number), | |
| ) | |
| if mesh is None or mesh.vertices.shape[0] == 0 or mesh.faces.shape[0] == 0: | |
| raise ValueError("Mesh generation returned an empty mesh") | |
| # Безопасная очистка визуала | |
| if hasattr(mesh, "visual") and mesh.visual is not None: | |
| try: | |
| mesh.visual = None | |
| except Exception: | |
| print("[WARN] Failed to clear visual, skipping") | |
| mesh.metadata.clear() | |
| mesh.name = "endless_tools_mesh" | |
| # Экспорт .glb | |
| # glb_data = export_glb(mesh) | |
| glb_data = mesh.export(file_type='glb') | |
| with open(output_path, "wb") as f: | |
| f.write(glb_data) | |
| print(f"[DEBUG] Mesh saved to {output_path}") | |
| return output_path if os.path.exists(output_path) else None | |
| except Exception as e: | |
| print("[ERROR]", e) | |
| traceback.print_exc() | |
| return f"Error: {e}" | |
| # Интерфейс Gradio | |
| demo = gr.Interface( | |
| fn=generate, | |
| inputs=gr.Image(type="filepath", label="Upload image"), | |
| outputs=gr.File(label="Download .glb"), | |
| title="TripoSG Image to 3D", | |
| description="Upload an image to generate a 3D model (.glb)", | |
| ) | |
| # Запуск | |
| demo.launch() | |