staswrs
clean scene 11
4763a4b
raw
history blame
5.19 kB
import os
import subprocess
# Убираем pyenv
os.environ.pop("PYENV_VERSION", None)
# Установка зависимостей
subprocess.run(["pip", "install", "torch", "wheel"], check=True)
subprocess.run([
"pip", "install", "--no-build-isolation",
"diso@git+https://github.com/SarahWeiii/diso.git"
], check=True)
# Импорты (перенесены после установки зависимостей)
import gradio as gr
import uuid
import torch
import zipfile
import requests
import traceback
import trimesh
from trimesh.exchange.gltf import export_glb
from inference_triposg import run_triposg
from triposg.pipelines.pipeline_triposg import TripoSGPipeline
from briarmbg import BriaRMBG
from pygltflib import GLTF2, Scene, Node, Mesh, Buffer, BufferView, Accessor, BufferTarget, ComponentType, AccessorType
import numpy as np
import base64
print("Trimesh version:", trimesh.__version__)
# Настройки устройства
device = "cuda" if torch.cuda.is_available() else "cpu"
dtype = torch.float16 if device == "cuda" else torch.float32
# Загрузка весов
weights_dir = "pretrained_weights"
triposg_path = os.path.join(weights_dir, "TripoSG")
rmbg_path = os.path.join(weights_dir, "RMBG-1.4")
if not (os.path.exists(triposg_path) and os.path.exists(rmbg_path)):
print("📦 Downloading pretrained weights...")
url = "https://huggingface.co/datasets/endlesstools/pretrained-assets/resolve/main/pretrained_models.zip"
zip_path = "pretrained_models.zip"
with requests.get(url, stream=True) as r:
r.raise_for_status()
with open(zip_path, "wb") as f:
for chunk in r.iter_content(chunk_size=8192):
f.write(chunk)
print("📦 Extracting weights...")
with zipfile.ZipFile(zip_path, "r") as zip_ref:
zip_ref.extractall(weights_dir)
os.remove(zip_path)
print("✅ Weights ready.")
# Загрузка моделей
pipe = TripoSGPipeline.from_pretrained(triposg_path).to(device, dtype)
rmbg_net = BriaRMBG.from_pretrained(rmbg_path).to(device)
rmbg_net.eval()
# Генерация .glb
def generate(image_path, face_number=50000, guidance_scale=5.0, num_steps=25):
print("[API CALL] image_path received:", image_path)
print("[API CALL] File exists:", os.path.exists(image_path))
temp_id = str(uuid.uuid4())
output_path = f"/tmp/{temp_id}.glb"
try:
mesh = run_triposg(
pipe=pipe,
image_input=image_path,
rmbg_net=rmbg_net,
seed=42,
num_inference_steps=int(num_steps),
guidance_scale=float(guidance_scale),
faces=int(face_number),
)
if mesh is None or mesh.vertices.shape[0] == 0 or mesh.faces.shape[0] == 0:
raise ValueError("Mesh generation returned an empty mesh")
vertices = mesh.vertices.astype(np.float32)
indices = mesh.faces.astype(np.uint32).flatten()
# Pack binary data
vertex_bytes = vertices.tobytes()
index_bytes = indices.tobytes()
total_bytes = vertex_bytes + index_bytes
buffer = Buffer(byteLength=len(total_bytes))
buffer_view_vert = BufferView(
buffer=0,
byteOffset=0,
byteLength=len(vertex_bytes),
target=BufferTarget.ARRAY_BUFFER.value
)
buffer_view_index = BufferView(
buffer=0,
byteOffset=len(vertex_bytes),
byteLength=len(index_bytes),
target=BufferTarget.ELEMENT_ARRAY_BUFFER.value
)
accessor_vert = Accessor(
bufferView=0,
byteOffset=0,
componentType=ComponentType.FLOAT.value,
count=len(vertices),
type=AccessorType.VEC3.value,
min=vertices.min(axis=0).tolist(),
max=vertices.max(axis=0).tolist()
)
accessor_index = Accessor(
bufferView=1,
byteOffset=0,
componentType=ComponentType.UNSIGNED_INT.value,
count=len(indices),
type=AccessorType.SCALAR.value
)
gltf = GLTF2(
buffers=[buffer],
bufferViews=[buffer_view_vert, buffer_view_index],
accessors=[accessor_vert, accessor_index],
meshes=[Mesh(primitives=[{
"attributes": {"POSITION": 0},
"indices": 1
}])],
scenes=[Scene(nodes=[0])],
nodes=[Node(mesh=0)],
scene=0
)
# Inject binary blob
gltf.set_binary_blob(total_bytes)
gltf.save_binary(output_path)
print(f"[DEBUG] Mesh saved to {output_path}")
return output_path if os.path.exists(output_path) else None
except Exception as e:
print("[ERROR]", e)
traceback.print_exc()
return f"Error: {e}"
# Интерфейс Gradio
demo = gr.Interface(
fn=generate,
inputs=gr.Image(type="filepath", label="Upload image"),
outputs=gr.File(label="Download .glb"),
title="TripoSG Image to 3D",
description="Upload an image to generate a 3D model (.glb)",
)
# Запуск
demo.launch()