Spaces:
Sleeping
Sleeping
import argparse | |
import os | |
import sys | |
from glob import glob | |
from typing import Any, Union | |
import numpy as np | |
import torch | |
import trimesh | |
from huggingface_hub import snapshot_download | |
from PIL import Image | |
sys.path.append(os.path.dirname(os.path.abspath(__file__))) | |
from triposg.pipelines.pipeline_triposg import TripoSGPipeline | |
from image_process import prepare_image | |
from briarmbg import BriaRMBG | |
import pymeshlab | |
def run_triposg( | |
pipe: Any, | |
image_input: Union[str, Image.Image], | |
rmbg_net: Any, | |
seed: int, | |
num_inference_steps: int = 50, | |
guidance_scale: float = 7.0, | |
faces: int = -1, | |
octree_depth: int = 9, # 👈 добавлено_et | |
) -> trimesh.Scene: | |
print("[DEBUG] Preparing image...") | |
img_pil = prepare_image(image_input, bg_color=np.array([1.0, 1.0, 1.0]), rmbg_net=rmbg_net) | |
print("[DEBUG] Running TripoSG pipeline...") | |
outputs = pipe( | |
image=img_pil, | |
generator=torch.Generator(device=pipe.device).manual_seed(seed), | |
num_inference_steps=num_inference_steps, | |
guidance_scale=guidance_scale, | |
flash_octree_depth=octree_depth, # 👈 добавлено_et | |
).samples[0] | |
print("[DEBUG] TripoSG output keys:", type(outputs), outputs[0].shape, outputs[1].shape) | |
mesh = trimesh.Trimesh(outputs[0].astype(np.float32), np.ascontiguousarray(outputs[1])) | |
print(f"[DEBUG] Mesh created: {mesh.vertices.shape[0]} verts / {mesh.faces.shape[0]} faces") | |
if faces > 0: | |
print(f"[DEBUG] Simplifying mesh to {faces} faces") | |
mesh = simplify_mesh(mesh, faces) # 👈 добавлено_et | |
return mesh | |
def mesh_to_pymesh(vertices, faces): | |
mesh = pymeshlab.Mesh(vertex_matrix=vertices, face_matrix=faces) | |
ms = pymeshlab.MeshSet() | |
ms.add_mesh(mesh) | |
return ms | |
def pymesh_to_trimesh(mesh): | |
verts = mesh.vertex_matrix()#.tolist() | |
faces = mesh.face_matrix()#.tolist() | |
return trimesh.Trimesh(vertices=verts, faces=faces) #, vID, fID | |
# old version | |
# def simplify_mesh(mesh: trimesh.Trimesh, n_faces): | |
# if mesh.faces.shape[0] > n_faces: | |
# ms = mesh_to_pymesh(mesh.vertices, mesh.faces) | |
# ms.meshing_merge_close_vertices() | |
# ms.meshing_decimation_quadric_edge_collapse(targetfacenum = n_faces) | |
# return pymesh_to_trimesh(ms.current_mesh()) | |
# else: | |
# return mesh | |
# new version | |
# def simplify_mesh(mesh: trimesh.Trimesh, n_faces): | |
# if mesh.faces.shape[0] > n_faces: | |
# ms = mesh_to_pymesh(mesh.vertices, mesh.faces) | |
# ms.meshing_merge_close_vertices() | |
# ms.meshing_decimation_quadric_edge_collapse(targetfacenum=n_faces) | |
# simplified = ms.current_mesh() | |
# if simplified is None or simplified.face_number() == 0: | |
# return None | |
# return pymesh_to_trimesh(simplified) | |
# return mesh | |
# new version demo | |
def simplify_mesh(mesh: trimesh.Trimesh, n_faces): | |
original_faces = mesh.faces.shape[0] # 👈 сохраняем исходное количество | |
if original_faces > n_faces: | |
ms = mesh_to_pymesh(mesh.vertices, mesh.faces) | |
ms.meshing_merge_close_vertices() | |
ms.meshing_decimation_quadric_edge_collapse(targetfacenum=n_faces) | |
simplified = ms.current_mesh() | |
if simplified is None or simplified.face_number() == 0: | |
return None | |
simplified_faces = simplified.face_number() | |
print(f"[DEBUG] Simplified mesh: {original_faces} → {simplified_faces} faces") # 👈 лог здесь | |
return pymesh_to_trimesh(simplified) | |
return mesh | |
if __name__ == "__main__": | |
device = "cuda" | |
dtype = torch.float16 | |
parser = argparse.ArgumentParser() | |
parser.add_argument("--image-input", type=str, required=True) | |
parser.add_argument("--output-path", type=str, default="./output.glb") | |
parser.add_argument("--seed", type=int, default=42) | |
parser.add_argument("--num-inference-steps", type=int, default=50) | |
parser.add_argument("--guidance-scale", type=float, default=7.0) | |
parser.add_argument("--faces", type=int, default=-1) | |
args = parser.parse_args() | |
# download pretrained weights | |
triposg_weights_dir = "pretrained_weights/TripoSG" | |
rmbg_weights_dir = "pretrained_weights/RMBG-1.4" | |
snapshot_download(repo_id="VAST-AI/TripoSG", local_dir=triposg_weights_dir) | |
snapshot_download(repo_id="briaai/RMBG-1.4", local_dir=rmbg_weights_dir) | |
# init rmbg model for background removal | |
rmbg_net = BriaRMBG.from_pretrained(rmbg_weights_dir).to(device) | |
rmbg_net.eval() | |
# init tripoSG pipeline | |
pipe: TripoSGPipeline = TripoSGPipeline.from_pretrained(triposg_weights_dir).to(device, dtype) | |
# run inference | |
run_triposg( | |
pipe, | |
image_input=args.image_input, | |
rmbg_net=rmbg_net, | |
seed=args.seed, | |
num_inference_steps=args.num_inference_steps, | |
guidance_scale=args.guidance_scale, | |
faces=args.faces, | |
octree_depth=octree_depth, | |
).export(args.output_path) | |
print(f"Mesh saved to {args.output_path}") | |