File size: 4,118 Bytes
07c509d
 
 
 
 
 
 
8e3153b
07c509d
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
8e3153b
07c509d
 
 
8e3153b
07c509d
 
8e3153b
07c509d
 
 
8e3153b
07c509d
8e3153b
07c509d
8e3153b
07c509d
8e3153b
07c509d
8e3153b
07c509d
 
 
 
8e3153b
07c509d
 
 
 
 
 
8e3153b
07c509d
 
 
8e3153b
07c509d
 
 
8e3153b
07c509d
 
 
8e3153b
07c509d
 
 
8e3153b
07c509d
 
 
 
8e3153b
07c509d
 
 
8e3153b
07c509d
 
 
8e3153b
07c509d
 
 
8e3153b
07c509d
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
import gradio as gr
import numpy as np
import random
from diffusers import DiffusionPipeline
import torch

device = "cuda" if torch.cuda.is_available() else "cpu"
model_repo_id = "stabilityai/sdxl-turbo"  # ์‚ฌ์šฉํ•˜๋ ค๋Š” ๋ชจ๋ธ ์ด๋ฆ„

if torch.cuda.is_available():
    torch_dtype = torch.float16
else:
    torch_dtype = torch.float32

pipe = DiffusionPipeline.from_pretrained(model_repo_id, torch_dtype=torch_dtype)
pipe = pipe.to(device)

MAX_SEED = np.iinfo(np.int32).max
MAX_IMAGE_SIZE = 1024

def infer(
    prompt,
    negative_prompt,
    seed,
    randomize_seed,
    width,
    height,
    guidance_scale,
    num_inference_steps,
    progress=gr.Progress(track_tqdm=True),
):
    if randomize_seed:
        seed = random.randint(0, MAX_SEED)

    generator = torch.Generator().manual_seed(seed)

    image = pipe(
        prompt=prompt,
        negative_prompt=negative_prompt,
        guidance_scale=guidance_scale,
        num_inference_steps=num_inference_steps,
        width=width,
        height=height,
        generator=generator,
    ).images[0]

    return image, seed


examples = [
    "Astronaut in a jungle, cold color palette, muted colors, detailed, 8k",
    "An astronaut riding a green horse",
    "A delicious ceviche cheesecake slice",
]

css = """
#col-container {
    margin: 0 auto;
    max-width: 640px;
}
"""

with gr.Blocks(css=css) as demo:
    with gr.Column(elem_id="col-container"):
        gr.Markdown(" # ํ…์ŠคํŠธ-์ด๋ฏธ์ง€ ์ƒ์„ฑ Gradio ํ…œํ”Œ๋ฆฟ")

        with gr.Row():
            prompt = gr.Text(
                label="ํ”„๋กฌํ”„ํŠธ",
                show_label=False,
                max_lines=1,
                placeholder="์ƒ์„ฑํ•˜๊ณ  ์‹ถ์€ ์ด๋ฏธ์ง€๋ฅผ ์ž…๋ ฅํ•˜์„ธ์š”",
                container=False,
            )

            run_button = gr.Button("์‹คํ–‰", scale=0, variant="primary")

        result = gr.Image(label="๊ฒฐ๊ณผ", show_label=False)

        with gr.Accordion("๊ณ ๊ธ‰ ์„ค์ •", open=False):
            negative_prompt = gr.Text(
                label="๋„ค๊ฑฐํ‹ฐ๋ธŒ ํ”„๋กฌํ”„ํŠธ",
                max_lines=1,
                placeholder="ํฌํ•จํ•˜์ง€ ์•Š์„ ๋‚ด์šฉ์„ ์ž…๋ ฅํ•˜์„ธ์š”",
                visible=False,
            )

            seed = gr.Slider(
                label="์‹œ๋“œ ๊ฐ’",
                minimum=0,
                maximum=MAX_SEED,
                step=1,
                value=0,
            )

            randomize_seed = gr.Checkbox(label="์‹œ๋“œ ๋žœ๋คํ™”", value=True)

            with gr.Row():
                width = gr.Slider(
                    label="๋„ˆ๋น„ (ํ”ฝ์…€)",
                    minimum=256,
                    maximum=MAX_IMAGE_SIZE,
                    step=32,
                    value=1024,  # ๋ชจ๋ธ์— ์ ํ•ฉํ•œ ๊ธฐ๋ณธ๊ฐ’์œผ๋กœ ์„ค์ •
                )

                height = gr.Slider(
                    label="๋†’์ด (ํ”ฝ์…€)",
                    minimum=256,
                    maximum=MAX_IMAGE_SIZE,
                    step=32,
                    value=1024,  # ๋ชจ๋ธ์— ์ ํ•ฉํ•œ ๊ธฐ๋ณธ๊ฐ’์œผ๋กœ ์„ค์ •
                )

            with gr.Row():
                guidance_scale = gr.Slider(
                    label="๊ฐ€์ด๋˜์Šค ์Šค์ผ€์ผ",
                    minimum=0.0,
                    maximum=10.0,
                    step=0.1,
                    value=0.0,  # ๋ชจ๋ธ์— ์ ํ•ฉํ•œ ๊ธฐ๋ณธ๊ฐ’์œผ๋กœ ์„ค์ •
                )

                num_inference_steps = gr.Slider(
                    label="์ถ”๋ก  ๋‹จ๊ณ„ ์ˆ˜",
                    minimum=1,
                    maximum=50,
                    step=1,
                    value=2,  # ๋ชจ๋ธ์— ์ ํ•ฉํ•œ ๊ธฐ๋ณธ๊ฐ’์œผ๋กœ ์„ค์ •
                )

        gr.Examples(examples=examples, inputs=[prompt])
    gr.on(
        triggers=[run_button.click, prompt.submit],
        fn=infer,
        inputs=[
            prompt,
            negative_prompt,
            seed,
            randomize_seed,
            width,
            height,
            guidance_scale,
            num_inference_steps,
        ],
        outputs=[result, seed],
    )

if __name__ == "__main__":
    demo.launch()