File size: 4,118 Bytes
07c509d 8e3153b 07c509d 8e3153b 07c509d 8e3153b 07c509d 8e3153b 07c509d 8e3153b 07c509d 8e3153b 07c509d 8e3153b 07c509d 8e3153b 07c509d 8e3153b 07c509d 8e3153b 07c509d 8e3153b 07c509d 8e3153b 07c509d 8e3153b 07c509d 8e3153b 07c509d 8e3153b 07c509d 8e3153b 07c509d 8e3153b 07c509d 8e3153b 07c509d 8e3153b 07c509d |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 |
import gradio as gr
import numpy as np
import random
from diffusers import DiffusionPipeline
import torch
device = "cuda" if torch.cuda.is_available() else "cpu"
model_repo_id = "stabilityai/sdxl-turbo" # ์ฌ์ฉํ๋ ค๋ ๋ชจ๋ธ ์ด๋ฆ
if torch.cuda.is_available():
torch_dtype = torch.float16
else:
torch_dtype = torch.float32
pipe = DiffusionPipeline.from_pretrained(model_repo_id, torch_dtype=torch_dtype)
pipe = pipe.to(device)
MAX_SEED = np.iinfo(np.int32).max
MAX_IMAGE_SIZE = 1024
def infer(
prompt,
negative_prompt,
seed,
randomize_seed,
width,
height,
guidance_scale,
num_inference_steps,
progress=gr.Progress(track_tqdm=True),
):
if randomize_seed:
seed = random.randint(0, MAX_SEED)
generator = torch.Generator().manual_seed(seed)
image = pipe(
prompt=prompt,
negative_prompt=negative_prompt,
guidance_scale=guidance_scale,
num_inference_steps=num_inference_steps,
width=width,
height=height,
generator=generator,
).images[0]
return image, seed
examples = [
"Astronaut in a jungle, cold color palette, muted colors, detailed, 8k",
"An astronaut riding a green horse",
"A delicious ceviche cheesecake slice",
]
css = """
#col-container {
margin: 0 auto;
max-width: 640px;
}
"""
with gr.Blocks(css=css) as demo:
with gr.Column(elem_id="col-container"):
gr.Markdown(" # ํ
์คํธ-์ด๋ฏธ์ง ์์ฑ Gradio ํ
ํ๋ฆฟ")
with gr.Row():
prompt = gr.Text(
label="ํ๋กฌํํธ",
show_label=False,
max_lines=1,
placeholder="์์ฑํ๊ณ ์ถ์ ์ด๋ฏธ์ง๋ฅผ ์
๋ ฅํ์ธ์",
container=False,
)
run_button = gr.Button("์คํ", scale=0, variant="primary")
result = gr.Image(label="๊ฒฐ๊ณผ", show_label=False)
with gr.Accordion("๊ณ ๊ธ ์ค์ ", open=False):
negative_prompt = gr.Text(
label="๋ค๊ฑฐํฐ๋ธ ํ๋กฌํํธ",
max_lines=1,
placeholder="ํฌํจํ์ง ์์ ๋ด์ฉ์ ์
๋ ฅํ์ธ์",
visible=False,
)
seed = gr.Slider(
label="์๋ ๊ฐ",
minimum=0,
maximum=MAX_SEED,
step=1,
value=0,
)
randomize_seed = gr.Checkbox(label="์๋ ๋๋คํ", value=True)
with gr.Row():
width = gr.Slider(
label="๋๋น (ํฝ์
)",
minimum=256,
maximum=MAX_IMAGE_SIZE,
step=32,
value=1024, # ๋ชจ๋ธ์ ์ ํฉํ ๊ธฐ๋ณธ๊ฐ์ผ๋ก ์ค์
)
height = gr.Slider(
label="๋์ด (ํฝ์
)",
minimum=256,
maximum=MAX_IMAGE_SIZE,
step=32,
value=1024, # ๋ชจ๋ธ์ ์ ํฉํ ๊ธฐ๋ณธ๊ฐ์ผ๋ก ์ค์
)
with gr.Row():
guidance_scale = gr.Slider(
label="๊ฐ์ด๋์ค ์ค์ผ์ผ",
minimum=0.0,
maximum=10.0,
step=0.1,
value=0.0, # ๋ชจ๋ธ์ ์ ํฉํ ๊ธฐ๋ณธ๊ฐ์ผ๋ก ์ค์
)
num_inference_steps = gr.Slider(
label="์ถ๋ก ๋จ๊ณ ์",
minimum=1,
maximum=50,
step=1,
value=2, # ๋ชจ๋ธ์ ์ ํฉํ ๊ธฐ๋ณธ๊ฐ์ผ๋ก ์ค์
)
gr.Examples(examples=examples, inputs=[prompt])
gr.on(
triggers=[run_button.click, prompt.submit],
fn=infer,
inputs=[
prompt,
negative_prompt,
seed,
randomize_seed,
width,
height,
guidance_scale,
num_inference_steps,
],
outputs=[result, seed],
)
if __name__ == "__main__":
demo.launch()
|