engralimalik commited on
Commit
a79c451
·
verified ·
1 Parent(s): 11d5829

Update app.py

Browse files
Files changed (1) hide show
  1. app.py +1 -83
app.py CHANGED
@@ -36,86 +36,4 @@ if uploaded_file is not None:
36
  # Show the categorized data
37
  st.write("Categorized Data:", df.head())
38
 
39
- # Visualization 1: Pie Chart of Spending by Category
40
- category_expenses = df.groupby('Category')['Amount'].sum()
41
-
42
- # Plot pie chart for expense distribution by category
43
- fig1 = plt.figure(figsize=(8, 8))
44
- category_expenses.plot(kind='pie', autopct='%1.1f%%', startangle=90, colors=plt.cm.Paired.colors)
45
- plt.title('Expense Distribution by Category')
46
- plt.ylabel('')
47
- st.pyplot(fig1)
48
-
49
- # Visualization 2: Monthly Spending Trends (Line Chart)
50
- # Convert 'Date' to datetime
51
- df['Date'] = pd.to_datetime(df['Date'])
52
-
53
- # Extract month-year for grouping and convert the Period to string to avoid JSON serialization issues
54
- df['Month'] = df['Date'].dt.to_period('M').astype(str) # Convert Period to string
55
-
56
- # Group by month and calculate the total amount spent per month
57
- monthly_expenses = df.groupby('Month')['Amount'].sum()
58
-
59
- # Plot monthly spending trends as a line chart
60
- fig2 = px.line(
61
- monthly_expenses,
62
- x=monthly_expenses.index,
63
- y=monthly_expenses.values,
64
- title="Monthly Expenses",
65
- labels={"x": "Month", "y": "Amount ($)"}
66
- )
67
- st.plotly_chart(fig2)
68
-
69
- # Budget and Alerts Example (Tracking if any category exceeds its budget)
70
- budgets = {
71
- "Groceries": 300,
72
- "Rent": 1000,
73
- "Utilities": 150,
74
- "Entertainment": 100,
75
- "Dining": 150,
76
- "Transportation": 120,
77
- }
78
-
79
- # Track if any category exceeds its budget
80
- df['Budget_Exceeded'] = df.apply(lambda row: row['Amount'] > budgets.get(row['Category'], 0), axis=1)
81
-
82
- # Show which categories exceeded their budgets
83
- exceeded_budget = df[df['Budget_Exceeded'] == True]
84
- st.write("Categories that exceeded the budget:", exceeded_budget[['Date', 'Category', 'Amount']])
85
-
86
- # Visualization 3: Monthly Spending vs Budget (Bar Chart)
87
- # Create a new DataFrame to show monthly budget vs actual spending
88
- monthly_expenses_df = pd.DataFrame({
89
- 'Actual': monthly_expenses,
90
- 'Budget': [sum(budgets.values())] * len(monthly_expenses) # Same budget for simplicity
91
- })
92
-
93
- # Plot a bar chart to compare actual spending vs budget
94
- fig3 = monthly_expenses_df.plot(kind='bar', figsize=(10, 6))
95
- plt.title('Monthly Spending vs Budget')
96
- plt.ylabel('Amount ($)')
97
- st.pyplot(fig3)
98
-
99
- # -----------------------------------------
100
- # Question Answering Functionality
101
- # -----------------------------------------
102
-
103
- # Initialize Hugging Face's question answering model (DistilBERT)
104
- qa_model = pipeline('question-answering', model="distilbert-base-uncased-distilled-squad")
105
-
106
- # Convert the DataFrame to a text block suitable for QA
107
- # Concatenate relevant information (Description, Amount, Category) to form a knowledge base
108
- knowledge_base = "\n".join(df.apply(lambda row: f"Description: {row['Description']}, Amount: {row['Amount']}, Category: {row['Category']}", axis=1))
109
-
110
- # Function to answer questions based on the knowledge base
111
- def answer_question(question):
112
- result = qa_model(question=question, context=knowledge_base)
113
- return result['answer']
114
-
115
- # Test the functionality
116
- st.write("Ask a question about your expenses:")
117
- user_question = st.text_input("Enter your question:")
118
-
119
- if user_question:
120
- answer = answer_question(user_question)
121
- st.write(f"Answer: {answer}")
 
36
  # Show the categorized data
37
  st.write("Categorized Data:", df.head())
38
 
39
+ #