|
"""
|
|
Copied from RT-DETR (https://github.com/lyuwenyu/RT-DETR)
|
|
Copyright(c) 2023 lyuwenyu. All Rights Reserved.
|
|
"""
|
|
|
|
from typing import Any, Dict, List, Optional
|
|
|
|
import PIL
|
|
import PIL.Image
|
|
import torch
|
|
import torch.nn as nn
|
|
import torchvision
|
|
import torchvision.transforms.v2 as T
|
|
import torchvision.transforms.v2.functional as F
|
|
|
|
from ...core import register
|
|
from .._misc import (
|
|
BoundingBoxes,
|
|
Image,
|
|
Mask,
|
|
SanitizeBoundingBoxes,
|
|
Video,
|
|
_boxes_keys,
|
|
convert_to_tv_tensor,
|
|
)
|
|
|
|
torchvision.disable_beta_transforms_warning()
|
|
|
|
|
|
RandomPhotometricDistort = register()(T.RandomPhotometricDistort)
|
|
RandomZoomOut = register()(T.RandomZoomOut)
|
|
RandomHorizontalFlip = register()(T.RandomHorizontalFlip)
|
|
Resize = register()(T.Resize)
|
|
|
|
|
|
|
|
SanitizeBoundingBoxes = register(name="SanitizeBoundingBoxes")(SanitizeBoundingBoxes)
|
|
RandomCrop = register()(T.RandomCrop)
|
|
Normalize = register()(T.Normalize)
|
|
|
|
|
|
@register()
|
|
class EmptyTransform(T.Transform):
|
|
def __init__(
|
|
self,
|
|
) -> None:
|
|
super().__init__()
|
|
|
|
def forward(self, *inputs):
|
|
inputs = inputs if len(inputs) > 1 else inputs[0]
|
|
return inputs
|
|
|
|
|
|
@register()
|
|
class PadToSize(T.Pad):
|
|
_transformed_types = (
|
|
PIL.Image.Image,
|
|
Image,
|
|
Video,
|
|
Mask,
|
|
BoundingBoxes,
|
|
)
|
|
|
|
def _get_params(self, flat_inputs: List[Any]) -> Dict[str, Any]:
|
|
sp = F.get_spatial_size(flat_inputs[0])
|
|
h, w = self.size[1] - sp[0], self.size[0] - sp[1]
|
|
self.padding = [0, 0, w, h]
|
|
return dict(padding=self.padding)
|
|
|
|
def __init__(self, size, fill=0, padding_mode="constant") -> None:
|
|
if isinstance(size, int):
|
|
size = (size, size)
|
|
self.size = size
|
|
super().__init__(0, fill, padding_mode)
|
|
|
|
def _transform(self, inpt: Any, params: Dict[str, Any]) -> Any:
|
|
fill = self._fill[type(inpt)]
|
|
padding = params["padding"]
|
|
return F.pad(inpt, padding=padding, fill=fill, padding_mode=self.padding_mode)
|
|
|
|
def __call__(self, *inputs: Any) -> Any:
|
|
outputs = super().forward(*inputs)
|
|
if len(outputs) > 1 and isinstance(outputs[1], dict):
|
|
outputs[1]["padding"] = torch.tensor(self.padding)
|
|
return outputs
|
|
|
|
|
|
@register()
|
|
class RandomIoUCrop(T.RandomIoUCrop):
|
|
def __init__(
|
|
self,
|
|
min_scale: float = 0.3,
|
|
max_scale: float = 1,
|
|
min_aspect_ratio: float = 0.5,
|
|
max_aspect_ratio: float = 2,
|
|
sampler_options: Optional[List[float]] = None,
|
|
trials: int = 40,
|
|
p: float = 1.0,
|
|
):
|
|
super().__init__(
|
|
min_scale, max_scale, min_aspect_ratio, max_aspect_ratio, sampler_options, trials
|
|
)
|
|
self.p = p
|
|
|
|
def __call__(self, *inputs: Any) -> Any:
|
|
if torch.rand(1) >= self.p:
|
|
return inputs if len(inputs) > 1 else inputs[0]
|
|
|
|
return super().forward(*inputs)
|
|
|
|
|
|
@register()
|
|
class ConvertBoxes(T.Transform):
|
|
_transformed_types = (BoundingBoxes,)
|
|
|
|
def __init__(self, fmt="", normalize=False) -> None:
|
|
super().__init__()
|
|
self.fmt = fmt
|
|
self.normalize = normalize
|
|
|
|
def transform(self, inpt: Any, params: Dict[str, Any]) -> Any:
|
|
return self._transform(inpt, params)
|
|
|
|
def _transform(self, inpt: Any, params: Dict[str, Any]) -> Any:
|
|
spatial_size = getattr(inpt, _boxes_keys[1])
|
|
if self.fmt:
|
|
in_fmt = inpt.format.value.lower()
|
|
inpt = torchvision.ops.box_convert(inpt, in_fmt=in_fmt, out_fmt=self.fmt.lower())
|
|
inpt = convert_to_tv_tensor(
|
|
inpt, key="boxes", box_format=self.fmt.upper(), spatial_size=spatial_size
|
|
)
|
|
|
|
if self.normalize:
|
|
inpt = inpt / torch.tensor(spatial_size[::-1]).tile(2)[None]
|
|
|
|
return inpt
|
|
|
|
|
|
@register()
|
|
class ConvertPILImage(T.Transform):
|
|
_transformed_types = (PIL.Image.Image,)
|
|
|
|
def __init__(self, dtype="float32", scale=True) -> None:
|
|
super().__init__()
|
|
self.dtype = dtype
|
|
self.scale = scale
|
|
|
|
def transform(self, inpt: Any, params: Dict[str, Any]) -> Any:
|
|
return self._transform(inpt, params)
|
|
|
|
def _transform(self, inpt: Any, params: Dict[str, Any]) -> Any:
|
|
inpt = F.pil_to_tensor(inpt)
|
|
if self.dtype == "float32":
|
|
inpt = inpt.float()
|
|
|
|
if self.scale:
|
|
inpt = inpt / 255.0
|
|
|
|
inpt = Image(inpt)
|
|
|
|
return inpt
|
|
|