File size: 18,616 Bytes
38f2ab8
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
import gradio as gr
import pandas as pd
import numpy as np
import json
import re
from datetime import datetime
from typing import List, Dict, Tuple
from transformers import pipeline, AutoTokenizer, AutoModelForSequenceClassification
import plotly.graph_objects as go
from plotly.subplots import make_subplots
import sqlite3
import hashlib
import time

# Initialize models
sentiment_analyzer = pipeline("sentiment-analysis", model="cardiffnlp/twitter-roberta-base-sentiment-latest")
tokenizer = AutoTokenizer.from_pretrained("cardiffnlp/twitter-roberta-base-sentiment-latest")

class ReviewAnalyzer:
    def __init__(self):
        self.db_path = "reviews.db"
        self._init_db()
        
    def _init_db(self):
        conn = sqlite3.connect(self.db_path)
        conn.execute('''
            CREATE TABLE IF NOT EXISTS usage_log (
                id INTEGER PRIMARY KEY,
                user_id TEXT,
                timestamp DATETIME,
                analysis_type TEXT,
                items_count INTEGER
            )
        ''')
        conn.close()
    
    def preprocess_text(self, text: str) -> str:
        """Clean and preprocess review text"""
        text = re.sub(r'http\S+', '', text)  # Remove URLs
        text = re.sub(r'[^\w\s]', '', text)  # Remove special chars
        text = text.strip().lower()
        return text
    
    def analyze_sentiment(self, reviews: List[str]) -> Dict:
        """Analyze sentiment of reviews"""
        results = []
        sentiments = {'positive': 0, 'negative': 0, 'neutral': 0}
        
        for review in reviews:
            if not review.strip():
                continue
                
            clean_review = self.preprocess_text(review)
            result = sentiment_analyzer(clean_review)[0]
            
            label = result['label'].lower()
            score = result['score']
            
            # Map labels to standard format
            if 'pos' in label:
                sentiment = 'positive'
            elif 'neg' in label:
                sentiment = 'negative'
            else:
                sentiment = 'neutral'
            
            sentiments[sentiment] += 1
            results.append({
                'text': review[:100] + '...' if len(review) > 100 else review,
                'sentiment': sentiment,
                'confidence': round(score, 3)
            })
        
        total = len(results)
        sentiment_percentages = {k: round(v/total*100, 1) for k, v in sentiments.items()}
        
        return {
            'summary': sentiment_percentages,
            'details': results,
            'total_reviews': total
        }
    
    def detect_fake_reviews(self, reviews: List[str]) -> Dict:
        """Detect potentially fake reviews"""
        fake_scores = []
        
        for review in reviews:
            if not review.strip():
                continue
                
            # Simple fake detection heuristics
            score = 0
            
            # Length check
            if len(review) < 20:
                score += 0.3
            
            # Repetitive words
            words = review.lower().split()
            unique_ratio = len(set(words)) / len(words) if words else 0
            if unique_ratio < 0.5:
                score += 0.4
            
            # Excessive punctuation
            punct_ratio = len(re.findall(r'[!?.]', review)) / len(review) if review else 0
            if punct_ratio > 0.1:
                score += 0.2
            
            # Generic phrases
            generic_phrases = ['amazing', 'perfect', 'best ever', 'highly recommend']
            if any(phrase in review.lower() for phrase in generic_phrases):
                score += 0.1
            
            fake_scores.append({
                'text': review[:100] + '...' if len(review) > 100 else review,
                'fake_probability': min(round(score, 3), 1.0),
                'status': 'suspicious' if score > 0.5 else 'authentic'
            })
        
        suspicious_count = sum(1 for item in fake_scores if item['fake_probability'] > 0.5)
        
        return {
            'summary': {
                'total_reviews': len(fake_scores),
                'suspicious_reviews': suspicious_count,
                'authenticity_rate': round((len(fake_scores) - suspicious_count) / len(fake_scores) * 100, 1) if fake_scores else 0
            },
            'details': fake_scores
        }
    
    def assess_quality(self, reviews: List[str]) -> Dict:
        """Assess review quality"""
        quality_scores = []
        
        for review in reviews:
            if not review.strip():
                continue
                
            score = 0
            factors = {}
            
            # Length factor
            length_score = min(len(review) / 200, 1.0)
            factors['length'] = round(length_score, 2)
            score += length_score * 0.3
            
            # Detail factor (specific words)
            detail_words = ['because', 'however', 'although', 'specifically', 'particularly']
            detail_score = min(sum(1 for word in detail_words if word in review.lower()) / 3, 1.0)
            factors['detail'] = round(detail_score, 2)
            score += detail_score * 0.3
            
            # Structure factor
            sentences = len(re.split(r'[.!?]', review))
            structure_score = min(sentences / 5, 1.0)
            factors['structure'] = round(structure_score, 2)
            score += structure_score * 0.2
            
            # Helpfulness factor
            helpful_words = ['pros', 'cons', 'recommend', 'suggest', 'tip', 'advice']
            helpful_score = min(sum(1 for word in helpful_words if word in review.lower()) / 2, 1.0)
            factors['helpfulness'] = round(helpful_score, 2)
            score += helpful_score * 0.2
            
            quality_scores.append({
                'text': review[:100] + '...' if len(review) > 100 else review,
                'quality_score': round(score, 3),
                'factors': factors,
                'grade': 'A' if score > 0.8 else 'B' if score > 0.6 else 'C' if score > 0.4 else 'D'
            })
        
        avg_quality = sum(item['quality_score'] for item in quality_scores) / len(quality_scores) if quality_scores else 0
        
        return {
            'summary': {
                'average_quality': round(avg_quality, 3),
                'total_reviews': len(quality_scores),
                'high_quality_count': sum(1 for item in quality_scores if item['quality_score'] > 0.7)
            },
            'details': quality_scores
        }
    
    def compare_competitors(self, product_a_reviews: List[str], product_b_reviews: List[str]) -> Tuple[Dict, go.Figure]:
        """Compare sentiment between two products"""
        analysis_a = self.analyze_sentiment(product_a_reviews)
        analysis_b = self.analyze_sentiment(product_b_reviews)
        
        # Create comparison chart
        fig = make_subplots(
            rows=1, cols=2,
            specs=[[{'type': 'pie'}, {'type': 'pie'}]],
            subplot_titles=['Product A', 'Product B']
        )
        
        # Product A pie chart
        fig.add_trace(go.Pie(
            labels=list(analysis_a['summary'].keys()),
            values=list(analysis_a['summary'].values()),
            name="Product A"
        ), row=1, col=1)
        
        # Product B pie chart
        fig.add_trace(go.Pie(
            labels=list(analysis_b['summary'].keys()),
            values=list(analysis_b['summary'].values()),
            name="Product B"
        ), row=1, col=2)
        
        fig.update_layout(title_text="Sentiment Comparison")
        
        comparison = {
            'product_a': analysis_a,
            'product_b': analysis_b,
            'winner': 'Product A' if analysis_a['summary']['positive'] > analysis_b['summary']['positive'] else 'Product B'
        }
        
        return comparison, fig
    
    def generate_report(self, analysis_data: Dict, report_type: str = "basic") -> str:
        """Generate analysis report"""
        timestamp = datetime.now().strftime("%Y-%m-%d %H:%M:%S")
        
        if report_type == "sentiment":
            return f"""
# Sentiment Analysis Report
Generated: {timestamp}

## Summary
- Total Reviews: {analysis_data.get('total_reviews', 0)}
- Positive: {analysis_data.get('summary', {}).get('positive', 0)}%
- Negative: {analysis_data.get('summary', {}).get('negative', 0)}%
- Neutral: {analysis_data.get('summary', {}).get('neutral', 0)}%

## Key Insights
- Overall sentiment trend: {'Positive' if analysis_data.get('summary', {}).get('positive', 0) > 50 else 'Mixed'}
- Customer satisfaction level: {'High' if analysis_data.get('summary', {}).get('positive', 0) > 70 else 'Moderate' if analysis_data.get('summary', {}).get('positive', 0) > 40 else 'Low'}

## Recommendations
- Focus on addressing negative feedback themes
- Leverage positive reviews for marketing
- Monitor sentiment trends over time
            """
        
        elif report_type == "fake":
            return f"""
# Fake Review Detection Report
Generated: {timestamp}

## Summary
- Total Reviews Analyzed: {analysis_data.get('summary', {}).get('total_reviews', 0)}
- Suspicious Reviews: {analysis_data.get('summary', {}).get('suspicious_reviews', 0)}
- Authenticity Rate: {analysis_data.get('summary', {}).get('authenticity_rate', 0)}%

## Risk Assessment
- Review Quality: {'High Risk' if analysis_data.get('summary', {}).get('authenticity_rate', 0) < 70 else 'Low Risk'}
- Recommendation: {'Investigate suspicious reviews' if analysis_data.get('summary', {}).get('suspicious_reviews', 0) > 0 else 'Reviews appear authentic'}
            """
        
        return "Report generated successfully"

# Global analyzer instance
analyzer = ReviewAnalyzer()

def process_reviews_input(text: str) -> List[str]:
    """Process review input text into list"""
    if not text.strip():
        return []
    
    # Split by lines or by common separators
    reviews = []
    for line in text.split('\n'):
        line = line.strip()
        if line and len(line) > 10:  # Minimum length check
            reviews.append(line)
    
    return reviews

def sentiment_analysis_interface(reviews_text: str):
    """Interface for sentiment analysis"""
    if not reviews_text.strip():
        return "Please enter some reviews to analyze.", None
    
    reviews = process_reviews_input(reviews_text)
    if not reviews:
        return "No valid reviews found. Please check your input.", None
    
    try:
        result = analyzer.analyze_sentiment(reviews)
        
        # Create visualization
        fig = go.Figure(data=[
            go.Bar(x=list(result['summary'].keys()), 
                   y=list(result['summary'].values()),
                   marker_color=['green', 'red', 'gray'])
        ])
        fig.update_layout(title="Sentiment Distribution", yaxis_title="Percentage")
        
        return json.dumps(result, indent=2), fig
    except Exception as e:
        return f"Error: {str(e)}", None

def fake_detection_interface(reviews_text: str):
    """Interface for fake review detection"""
    if not reviews_text.strip():
        return "Please enter some reviews to analyze."
    
    reviews = process_reviews_input(reviews_text)
    if not reviews:
        return "No valid reviews found. Please check your input."
    
    try:
        result = analyzer.detect_fake_reviews(reviews)
        return json.dumps(result, indent=2)
    except Exception as e:
        return f"Error: {str(e)}"

def quality_assessment_interface(reviews_text: str):
    """Interface for quality assessment"""
    if not reviews_text.strip():
        return "Please enter some reviews to analyze."
    
    reviews = process_reviews_input(reviews_text)
    if not reviews:
        return "No valid reviews found. Please check your input."
    
    try:
        result = analyzer.assess_quality(reviews)
        return json.dumps(result, indent=2)
    except Exception as e:
        return f"Error: {str(e)}"

def competitor_comparison_interface(product_a_text: str, product_b_text: str):
    """Interface for competitor comparison"""
    if not product_a_text.strip() or not product_b_text.strip():
        return "Please enter reviews for both products.", None
    
    reviews_a = process_reviews_input(product_a_text)
    reviews_b = process_reviews_input(product_b_text)
    
    if not reviews_a or not reviews_b:
        return "Please provide valid reviews for both products.", None
    
    try:
        result, fig = analyzer.compare_competitors(reviews_a, reviews_b)
        return json.dumps(result, indent=2), fig
    except Exception as e:
        return f"Error: {str(e)}", None

def generate_report_interface(analysis_result: str, report_type: str):
    """Interface for report generation"""
    if not analysis_result.strip():
        return "No analysis data available. Please run an analysis first."
    
    try:
        data = json.loads(analysis_result)
        report = analyzer.generate_report(data, report_type.lower())
        return report
    except Exception as e:
        return f"Error generating report: {str(e)}"

# Create Gradio interface
with gr.Blocks(title="SmartReview Pro", theme=gr.themes.Soft()) as demo:
    gr.Markdown("# πŸ›’ SmartReview Pro")
    gr.Markdown("Professional review analysis platform for e-commerce businesses")
    
    with gr.Tab("πŸ“Š Sentiment Analysis"):
        gr.Markdown("### Analyze customer sentiment from reviews")
        with gr.Row():
            with gr.Column():
                sentiment_input = gr.Textbox(
                    lines=10,
                    placeholder="Enter reviews (one per line):\nGreat product, love it!\nTerrible quality, waste of money.\nOkay product, nothing special.",
                    label="Reviews"
                )
                sentiment_btn = gr.Button("Analyze Sentiment", variant="primary")
            with gr.Column():
                sentiment_output = gr.Textbox(label="Analysis Results", lines=15)
                sentiment_chart = gr.Plot(label="Sentiment Distribution")
        
        sentiment_btn.click(
            sentiment_analysis_interface,
            inputs=[sentiment_input],
            outputs=[sentiment_output, sentiment_chart]
        )
    
    with gr.Tab("πŸ” Fake Review Detection"):
        gr.Markdown("### Detect potentially fake or suspicious reviews")
        with gr.Row():
            with gr.Column():
                fake_input = gr.Textbox(
                    lines=10,
                    placeholder="Enter reviews to check for authenticity...",
                    label="Reviews"
                )
                fake_btn = gr.Button("Detect Fake Reviews", variant="primary")
            with gr.Column():
                fake_output = gr.Textbox(label="Detection Results", lines=15)
        
        fake_btn.click(
            fake_detection_interface,
            inputs=[fake_input],
            outputs=[fake_output]
        )
    
    with gr.Tab("⭐ Quality Assessment"):
        gr.Markdown("### Assess the quality and helpfulness of reviews")
        with gr.Row():
            with gr.Column():
                quality_input = gr.Textbox(
                    lines=10,
                    placeholder="Enter reviews to assess quality...",
                    label="Reviews"
                )
                quality_btn = gr.Button("Assess Quality", variant="primary")
            with gr.Column():
                quality_output = gr.Textbox(label="Quality Assessment", lines=15)
        
        quality_btn.click(
            quality_assessment_interface,
            inputs=[quality_input],
            outputs=[quality_output]
        )
    
    with gr.Tab("πŸ†š Competitor Comparison"):
        gr.Markdown("### Compare sentiment between competing products")
        with gr.Row():
            with gr.Column():
                comp_product_a = gr.Textbox(
                    lines=8,
                    placeholder="Product A reviews...",
                    label="Product A Reviews"
                )
                comp_product_b = gr.Textbox(
                    lines=8,
                    placeholder="Product B reviews...",
                    label="Product B Reviews"
                )
                comp_btn = gr.Button("Compare Products", variant="primary")
            with gr.Column():
                comp_output = gr.Textbox(label="Comparison Results", lines=15)
                comp_chart = gr.Plot(label="Comparison Chart")
        
        comp_btn.click(
            competitor_comparison_interface,
            inputs=[comp_product_a, comp_product_b],
            outputs=[comp_output, comp_chart]
        )
    
    with gr.Tab("πŸ“‹ Report Generation"):
        gr.Markdown("### Generate professional analysis reports")
        with gr.Row():
            with gr.Column():
                report_data = gr.Textbox(
                    lines=10,
                    placeholder="Paste analysis results here...",
                    label="Analysis Data (JSON)"
                )
                report_type = gr.Dropdown(
                    choices=["sentiment", "fake", "quality"],
                    value="sentiment",
                    label="Report Type"
                )
                report_btn = gr.Button("Generate Report", variant="primary")
            with gr.Column():
                report_output = gr.Textbox(label="Generated Report", lines=15)
        
        report_btn.click(
            generate_report_interface,
            inputs=[report_data, report_type],
            outputs=[report_output]
        )
    
    with gr.Tab("ℹ️ About"):
        gr.Markdown("""
        ## SmartReview Pro Features
        
        - **Sentiment Analysis**: Analyze customer emotions and opinions
        - **Fake Review Detection**: Identify suspicious or inauthentic reviews  
        - **Quality Assessment**: Evaluate review helpfulness and detail
        - **Competitor Comparison**: Compare sentiment across products
        - **Professional Reports**: Generate detailed analysis reports
        
        ## Pricing Plans
        - **Free**: 10 analyses per day
        - **Pro ($299/month)**: 1000 analyses per day + advanced features
        - **Enterprise**: Unlimited usage + API access + custom reports
        
        Contact us for enterprise solutions and custom integrations.
        """)

if __name__ == "__main__":
    demo.launch()