Spaces:
Sleeping
Sleeping
File size: 27,764 Bytes
38f2ab8 baf4a02 38f2ab8 baf4a02 38f2ab8 99a8de6 38f2ab8 baf4a02 38f2ab8 baf4a02 99a8de6 baf4a02 99a8de6 baf4a02 99a8de6 baf4a02 99a8de6 baf4a02 99a8de6 baf4a02 99a8de6 baf4a02 99a8de6 baf4a02 38f2ab8 baf4a02 38f2ab8 baf4a02 38f2ab8 baf4a02 38f2ab8 baf4a02 38f2ab8 baf4a02 38f2ab8 baf4a02 38f2ab8 baf4a02 38f2ab8 baf4a02 38f2ab8 baf4a02 38f2ab8 baf4a02 38f2ab8 baf4a02 38f2ab8 baf4a02 38f2ab8 baf4a02 38f2ab8 baf4a02 38f2ab8 baf4a02 38f2ab8 baf4a02 38f2ab8 baf4a02 38f2ab8 baf4a02 38f2ab8 baf4a02 38f2ab8 baf4a02 38f2ab8 baf4a02 38f2ab8 baf4a02 38f2ab8 baf4a02 38f2ab8 baf4a02 38f2ab8 baf4a02 38f2ab8 baf4a02 38f2ab8 baf4a02 38f2ab8 baf4a02 38f2ab8 baf4a02 38f2ab8 baf4a02 38f2ab8 baf4a02 38f2ab8 baf4a02 38f2ab8 baf4a02 38f2ab8 baf4a02 38f2ab8 baf4a02 38f2ab8 baf4a02 38f2ab8 baf4a02 38f2ab8 baf4a02 38f2ab8 baf4a02 38f2ab8 baf4a02 38f2ab8 baf4a02 38f2ab8 baf4a02 38f2ab8 baf4a02 38f2ab8 baf4a02 38f2ab8 baf4a02 38f2ab8 baf4a02 38f2ab8 baf4a02 38f2ab8 baf4a02 38f2ab8 baf4a02 38f2ab8 baf4a02 38f2ab8 baf4a02 38f2ab8 baf4a02 38f2ab8 baf4a02 38f2ab8 baf4a02 38f2ab8 baf4a02 38f2ab8 baf4a02 38f2ab8 baf4a02 38f2ab8 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 643 644 645 646 647 648 649 650 651 652 653 654 655 656 657 658 659 660 661 662 663 664 665 666 667 668 669 670 671 672 673 674 675 676 677 678 679 680 681 682 683 684 685 686 687 688 689 690 691 692 693 694 695 696 697 698 699 700 701 702 703 704 705 706 707 708 709 710 711 712 713 714 715 716 717 718 |
import gradio as gr
import pandas as pd
import numpy as np
import json
import re
import io
from datetime import datetime
from typing import List, Dict, Tuple
from transformers import pipeline, AutoTokenizer
import plotly.graph_objects as go
from plotly.subplots import make_subplots
import sqlite3
import hashlib
import time
# Initialize models
sentiment_analyzer = pipeline("sentiment-analysis", model="cardiffnlp/twitter-roberta-base-sentiment-latest")
# Use a simpler ABSA approach with keyword extraction instead of the problematic model
absa_analyzer = None
class ReviewAnalyzer:
def __init__(self):
self.db_path = "reviews.db"
self._init_db()
def _init_db(self):
conn = sqlite3.connect(self.db_path)
conn.execute('''
CREATE TABLE IF NOT EXISTS usage_log (
id INTEGER PRIMARY KEY,
user_id TEXT,
timestamp DATETIME,
analysis_type TEXT,
items_count INTEGER
)
''')
conn.close()
def preprocess_text(self, text: str) -> str:
"""Clean and preprocess review text"""
text = re.sub(r'http\S+', '', text)
text = re.sub(r'[^\w\s]', '', text)
text = text.strip().lower()
return text
def extract_aspect_keywords(self, reviews: List[str]) -> Dict:
"""Extract aspect-based sentiment keywords using rule-based approach"""
positive_aspects = {}
negative_aspects = {}
detailed_aspects = []
# Define aspect keywords
aspect_keywords = {
'quality': ['quality', 'build', 'material', 'durable', 'cheap', 'flimsy'],
'price': ['price', 'cost', 'expensive', 'cheap', 'value', 'money', 'affordable'],
'delivery': ['delivery', 'shipping', 'fast', 'slow', 'quick', 'late'],
'service': ['service', 'support', 'staff', 'helpful', 'rude', 'friendly'],
'design': ['design', 'look', 'beautiful', 'ugly', 'style', 'appearance'],
'usability': ['easy', 'difficult', 'simple', 'complex', 'user-friendly'],
'performance': ['performance', 'speed', 'fast', 'slow', 'efficient']
}
for review in reviews:
if not review.strip() or len(review) < 10:
continue
# Get sentiment for the review
try:
sentiment_result = sentiment_analyzer(review)[0]
review_sentiment = 'positive' if 'pos' in sentiment_result['label'].lower() else 'negative'
confidence = float(sentiment_result['score'])
except:
continue
review_lower = review.lower()
# Check for aspect mentions
for aspect, keywords in aspect_keywords.items():
for keyword in keywords:
if keyword in review_lower:
# Determine if this specific aspect mention is positive or negative
aspect_sentiment = review_sentiment
# Add to aspect counts
if aspect_sentiment == 'positive':
if aspect not in positive_aspects:
positive_aspects[aspect] = 0
positive_aspects[aspect] += 1
else:
if aspect not in negative_aspects:
negative_aspects[aspect] = 0
negative_aspects[aspect] += 1
detailed_aspects.append({
'review': review[:50] + '...',
'aspect': aspect,
'sentiment': aspect_sentiment,
'confidence': round(confidence, 3)
})
break # Only count each aspect once per review
# Get top aspects
top_positive = sorted(positive_aspects.items(), key=lambda x: x[1], reverse=True)[:10]
top_negative = sorted(negative_aspects.items(), key=lambda x: x[1], reverse=True)[:10]
return {
'top_positive_aspects': top_positive,
'top_negative_aspects': top_negative,
'detailed_aspects': detailed_aspects,
'summary': {
'total_positive_aspects': len(positive_aspects),
'total_negative_aspects': len(negative_aspects)
}
}
def analyze_sentiment(self, reviews: List[str]) -> Dict:
"""Analyze sentiment of reviews with keyword extraction"""
results = []
sentiments = {'positive': 0, 'negative': 0, 'neutral': 0}
for review in reviews:
if not review.strip():
continue
clean_review = self.preprocess_text(review)
result = sentiment_analyzer(clean_review)[0]
label = result['label'].lower()
score = float(result['score'])
if 'pos' in label:
sentiment = 'positive'
elif 'neg' in label:
sentiment = 'negative'
else:
sentiment = 'neutral'
sentiments[sentiment] += 1
results.append({
'text': review[:100] + '...' if len(review) > 100 else review,
'sentiment': sentiment,
'confidence': round(score, 3)
})
total = len(results)
sentiment_percentages = {k: round(v/total*100, 1) for k, v in sentiments.items()}
# Extract keywords
keywords = self.extract_aspect_keywords(reviews)
return {
'summary': sentiment_percentages,
'details': results,
'total_reviews': total,
'keywords': keywords
}
def detect_fake_reviews(self, reviews: List[str], metadata: Dict = None) -> Dict:
"""Detect potentially fake reviews with optional metadata"""
fake_scores = []
# Process metadata if provided
metadata_flags = []
if metadata and 'timestamps' in metadata and 'usernames' in metadata:
metadata_flags = self._analyze_metadata(metadata['timestamps'], metadata['usernames'])
for i, review in enumerate(reviews):
if not review.strip():
continue
score = 0
flags = []
# Text-based checks
if len(review) < 20:
score += 0.3
flags.append("too_short")
words = review.lower().split()
unique_ratio = len(set(words)) / len(words) if words else 0
if unique_ratio < 0.5:
score += 0.4
flags.append("repetitive")
punct_ratio = len(re.findall(r'[!?.]', review)) / len(review) if review else 0
if punct_ratio > 0.1:
score += 0.2
flags.append("excessive_punctuation")
generic_phrases = ['amazing', 'perfect', 'best ever', 'highly recommend']
if any(phrase in review.lower() for phrase in generic_phrases):
score += 0.1
flags.append("generic_language")
# Add metadata flags if available
if i < len(metadata_flags):
if metadata_flags[i]:
score += 0.3
flags.extend(metadata_flags[i])
fake_scores.append({
'text': review[:100] + '...' if len(review) > 100 else review,
'fake_probability': min(round(score, 3), 1.0),
'status': 'suspicious' if score > 0.5 else 'authentic',
'flags': flags
})
suspicious_count = sum(1 for item in fake_scores if item['fake_probability'] > 0.5)
return {
'summary': {
'total_reviews': len(fake_scores),
'suspicious_reviews': suspicious_count,
'authenticity_rate': round((len(fake_scores) - suspicious_count) / len(fake_scores) * 100, 1) if fake_scores else 0
},
'details': fake_scores,
'metadata_analysis': metadata_flags if metadata_flags else None
}
def _analyze_metadata(self, timestamps: List[str], usernames: List[str]) -> List[List[str]]:
"""Analyze metadata for suspicious patterns"""
flags_per_review = [[] for _ in range(len(timestamps))]
# Time density analysis
if len(timestamps) >= 5:
times = []
for i, ts in enumerate(timestamps):
try:
dt = datetime.strptime(ts, "%Y-%m-%d %H:%M:%S")
times.append((i, dt))
except:
continue
times.sort(key=lambda x: x[1])
# Check for clusters
for i in range(len(times) - 5):
if (times[i + 5][1] - times[i][1]).total_seconds() < 300: # 5 mins
for j in range(i, i + 6):
flags_per_review[times[j][0]].append("time_cluster")
# Username pattern analysis
for i, username in enumerate(usernames):
if re.match(r"user_\d{4,}", username):
flags_per_review[i].append("suspicious_username")
if len(username) < 4:
flags_per_review[i].append("short_username")
return flags_per_review
def assess_quality(self, reviews: List[str], custom_weights: Dict = None) -> Tuple[Dict, go.Figure]:
"""Assess review quality with customizable weights and radar chart"""
default_weights = {
'length': 0.25,
'detail': 0.25,
'structure': 0.25,
'helpfulness': 0.25
}
weights = custom_weights if custom_weights else default_weights
quality_scores = []
for review in reviews:
if not review.strip():
continue
factors = {}
# Length factor
length_score = min(len(review) / 200, 1.0)
factors['length'] = round(length_score, 2)
# Detail factor
detail_words = ['because', 'however', 'although', 'specifically', 'particularly']
detail_score = min(sum(1 for word in detail_words if word in review.lower()) / 3, 1.0)
factors['detail'] = round(detail_score, 2)
# Structure factor
sentences = len(re.split(r'[.!?]', review))
structure_score = min(sentences / 5, 1.0)
factors['structure'] = round(structure_score, 2)
# Helpfulness factor
helpful_words = ['pros', 'cons', 'recommend', 'suggest', 'tip', 'advice']
helpful_score = min(sum(1 for word in helpful_words if word in review.lower()) / 2, 1.0)
factors['helpfulness'] = round(helpful_score, 2)
# Calculate weighted score
total_score = sum(factors[k] * weights[k] for k in factors.keys())
quality_scores.append({
'text': review[:100] + '...' if len(review) > 100 else review,
'quality_score': round(total_score, 3),
'factors': factors,
'grade': 'A' if total_score > 0.8 else 'B' if total_score > 0.6 else 'C' if total_score > 0.4 else 'D'
})
avg_quality = sum(item['quality_score'] for item in quality_scores) / len(quality_scores) if quality_scores else 0
# Create radar chart for average factors
avg_factors = {}
for factor in ['length', 'detail', 'structure', 'helpfulness']:
avg_factors[factor] = float(sum(item['factors'][factor] for item in quality_scores) / len(quality_scores) if quality_scores else 0)
fig = go.Figure()
fig.add_trace(go.Scatterpolar(
r=list(avg_factors.values()),
theta=list(avg_factors.keys()),
fill='toself',
name='Quality Factors'
))
fig.update_layout(
polar=dict(
radialaxis=dict(
visible=True,
range=[0, 1]
)),
showlegend=True,
title="Average Quality Factors"
)
return {
'summary': {
'average_quality': round(avg_quality, 3),
'total_reviews': len(quality_scores),
'high_quality_count': sum(1 for item in quality_scores if item['quality_score'] > 0.7),
'weights_used': weights
},
'details': quality_scores,
'factor_averages': avg_factors
}, fig
def compare_competitors(self, product_a_reviews: List[str], product_b_reviews: List[str]) -> Tuple[Dict, go.Figure]:
"""Compare sentiment between two products"""
analysis_a = self.analyze_sentiment(product_a_reviews)
analysis_b = self.analyze_sentiment(product_b_reviews)
fig = make_subplots(
rows=1, cols=2,
specs=[[{'type': 'pie'}, {'type': 'pie'}]],
subplot_titles=['Product A', 'Product B']
)
fig.add_trace(go.Pie(
labels=list(analysis_a['summary'].keys()),
values=list(analysis_a['summary'].values()),
name="Product A"
), row=1, col=1)
fig.add_trace(go.Pie(
labels=list(analysis_b['summary'].keys()),
values=list(analysis_b['summary'].values()),
name="Product B"
), row=1, col=2)
fig.update_layout(title_text="Sentiment Comparison")
comparison = {
'product_a': analysis_a,
'product_b': analysis_b,
'winner': 'Product A' if analysis_a['summary']['positive'] > analysis_b['summary']['positive'] else 'Product B'
}
return comparison, fig
def generate_report(self, analysis_data: Dict, report_type: str = "basic") -> str:
"""Generate analysis report with export capability"""
timestamp = datetime.now().strftime("%Y-%m-%d %H:%M:%S")
if report_type == "sentiment":
keywords = analysis_data.get('keywords', {})
top_pos = keywords.get('top_positive_aspects', [])[:5]
top_neg = keywords.get('top_negative_aspects', [])[:5]
return f"""# Sentiment Analysis Report
Generated: {timestamp}
## Summary
- Total Reviews: {analysis_data.get('total_reviews', 0)}
- Positive: {analysis_data.get('summary', {}).get('positive', 0)}%
- Negative: {analysis_data.get('summary', {}).get('negative', 0)}%
- Neutral: {analysis_data.get('summary', {}).get('neutral', 0)}%
## Top Positive Aspects
{chr(10).join([f"- {aspect[0]} (mentioned {aspect[1]} times)" for aspect in top_pos])}
## Top Negative Aspects
{chr(10).join([f"- {aspect[0]} (mentioned {aspect[1]} times)" for aspect in top_neg])}
## Key Insights
- Overall sentiment: {'Positive' if analysis_data.get('summary', {}).get('positive', 0) > 50 else 'Mixed'}
- Main complaints: {', '.join([aspect[0] for aspect in top_neg[:3]])}
- Key strengths: {', '.join([aspect[0] for aspect in top_pos[:3]])}
## Recommendations
- Address negative aspects: {', '.join([aspect[0] for aspect in top_neg[:2]])}
- Leverage positive aspects in marketing
- Monitor sentiment trends over time
"""
elif report_type == "fake":
return f"""# Fake Review Detection Report
Generated: {timestamp}
## Summary
- Total Reviews: {analysis_data.get('summary', {}).get('total_reviews', 0)}
- Suspicious Reviews: {analysis_data.get('summary', {}).get('suspicious_reviews', 0)}
- Authenticity Rate: {analysis_data.get('summary', {}).get('authenticity_rate', 0)}%
## Risk Assessment
- Overall Risk: {'High' if analysis_data.get('summary', {}).get('authenticity_rate', 0) < 70 else 'Low'}
- Action Required: {'Yes' if analysis_data.get('summary', {}).get('suspicious_reviews', 0) > 0 else 'No'}
## Common Fraud Indicators
- Short reviews with generic language
- Repetitive content patterns
- Suspicious timing clusters
- Unusual username patterns
"""
return "Report generated successfully"
# Global analyzer instance
analyzer = ReviewAnalyzer()
def process_reviews_input(text: str) -> List[str]:
"""Process review input text into list"""
if not text.strip():
return []
reviews = []
for line in text.split('\n'):
line = line.strip()
if line and len(line) > 10:
reviews.append(line)
return reviews
def process_csv_upload(file) -> Tuple[List[str], Dict]:
"""Process uploaded CSV file"""
if file is None:
return [], {}
try:
df = pd.read_csv(file.name)
# Look for common column names
review_col = None
time_col = None
user_col = None
for col in df.columns:
col_lower = col.lower()
if 'review' in col_lower or 'comment' in col_lower or 'text' in col_lower:
review_col = col
elif 'time' in col_lower or 'date' in col_lower:
time_col = col
elif 'user' in col_lower or 'name' in col_lower:
user_col = col
if review_col is None:
return [], {"error": "No review column found. Expected columns: 'review', 'comment', or 'text'"}
reviews = df[review_col].dropna().astype(str).tolist()
metadata = {}
if time_col:
metadata['timestamps'] = df[time_col].dropna().astype(str).tolist()
if user_col:
metadata['usernames'] = df[user_col].dropna().astype(str).tolist()
return reviews, metadata
except Exception as e:
return [], {"error": f"Failed to process CSV: {str(e)}"}
def sentiment_analysis_interface(reviews_text: str, csv_file):
"""Interface for sentiment analysis"""
reviews = []
if csv_file is not None:
reviews, metadata = process_csv_upload(csv_file)
if 'error' in metadata:
return metadata['error'], None
else:
reviews = process_reviews_input(reviews_text)
if not reviews:
return "Please enter reviews or upload a CSV file.", None
try:
result = analyzer.analyze_sentiment(reviews)
fig = go.Figure(data=[
go.Bar(x=list(result['summary'].keys()),
y=list(result['summary'].values()),
marker_color=['green', 'red', 'gray'])
])
fig.update_layout(title="Sentiment Distribution", yaxis_title="Percentage")
return json.dumps(result, indent=2), fig
except Exception as e:
return f"Error: {str(e)}", None
def fake_detection_interface(reviews_text: str, csv_file):
"""Interface for fake review detection"""
reviews = []
metadata = {}
if csv_file is not None:
reviews, metadata = process_csv_upload(csv_file)
if 'error' in metadata:
return metadata['error']
else:
reviews = process_reviews_input(reviews_text)
if not reviews:
return "Please enter reviews or upload a CSV file."
try:
result = analyzer.detect_fake_reviews(reviews, metadata if metadata else None)
return json.dumps(result, indent=2)
except Exception as e:
return f"Error: {str(e)}"
def quality_assessment_interface(reviews_text: str, csv_file, length_weight: float, detail_weight: float, structure_weight: float, help_weight: float):
"""Interface for quality assessment with custom weights"""
reviews = []
if csv_file is not None:
reviews, metadata = process_csv_upload(csv_file)
if 'error' in metadata:
return metadata['error'], None
else:
reviews = process_reviews_input(reviews_text)
if not reviews:
return "Please enter reviews or upload a CSV file.", None
try:
custom_weights = {
'length': length_weight,
'detail': detail_weight,
'structure': structure_weight,
'helpfulness': help_weight
}
result, radar_fig = analyzer.assess_quality(reviews, custom_weights)
return json.dumps(result, indent=2), radar_fig
except Exception as e:
return f"Error: {str(e)}", None
def competitor_comparison_interface(product_a_text: str, product_b_text: str):
"""Interface for competitor comparison"""
if not product_a_text.strip() or not product_b_text.strip():
return "Please enter reviews for both products.", None
reviews_a = process_reviews_input(product_a_text)
reviews_b = process_reviews_input(product_b_text)
if not reviews_a or not reviews_b:
return "Please provide valid reviews for both products.", None
try:
result, fig = analyzer.compare_competitors(reviews_a, reviews_b)
return json.dumps(result, indent=2), fig
except Exception as e:
return f"Error: {str(e)}", None
def generate_report_interface(analysis_result: str, report_type: str):
"""Interface for report generation"""
if not analysis_result.strip():
return "No analysis data available. Please run an analysis first."
try:
data = json.loads(analysis_result)
report = analyzer.generate_report(data, report_type.lower())
return report
except Exception as e:
return f"Error generating report: {str(e)}"
# Create Gradio interface
with gr.Blocks(title="SmartReview Pro", theme=gr.themes.Soft()) as demo:
gr.Markdown("# π SmartReview Pro")
gr.Markdown("Advanced review analysis platform with AI-powered insights")
with gr.Tab("π Sentiment Analysis"):
gr.Markdown("### Analyze customer sentiment and extract key aspects")
with gr.Row():
with gr.Column():
sentiment_input = gr.Textbox(
lines=8,
placeholder="Enter reviews (one per line) or upload CSV...",
label="Reviews"
)
sentiment_csv = gr.File(
label="Upload CSV (columns: review/comment/text, optional: timestamp, username)",
file_types=[".csv"]
)
sentiment_btn = gr.Button("Analyze Sentiment", variant="primary")
with gr.Column():
sentiment_output = gr.Textbox(label="Analysis Results", lines=15)
sentiment_chart = gr.Plot(label="Sentiment Distribution")
sentiment_btn.click(
sentiment_analysis_interface,
inputs=[sentiment_input, sentiment_csv],
outputs=[sentiment_output, sentiment_chart]
)
with gr.Tab("π Fake Review Detection"):
gr.Markdown("### Detect suspicious reviews using text analysis and metadata")
with gr.Row():
with gr.Column():
fake_input = gr.Textbox(
lines=8,
placeholder="Enter reviews to analyze...",
label="Reviews"
)
fake_csv = gr.File(
label="Upload CSV (supports timestamp & username analysis)",
file_types=[".csv"]
)
fake_btn = gr.Button("Detect Fake Reviews", variant="primary")
with gr.Column():
fake_output = gr.Textbox(label="Detection Results", lines=15)
fake_btn.click(
fake_detection_interface,
inputs=[fake_input, fake_csv],
outputs=[fake_output]
)
with gr.Tab("β Quality Assessment"):
gr.Markdown("### Assess review quality with customizable weights")
with gr.Row():
with gr.Column():
quality_input = gr.Textbox(
lines=8,
placeholder="Enter reviews to assess...",
label="Reviews"
)
quality_csv = gr.File(
label="Upload CSV",
file_types=[".csv"]
)
gr.Markdown("**Customize Quality Weights:**")
with gr.Row():
length_weight = gr.Slider(0, 1, 0.25, label="Length Weight")
detail_weight = gr.Slider(0, 1, 0.25, label="Detail Weight")
with gr.Row():
structure_weight = gr.Slider(0, 1, 0.25, label="Structure Weight")
help_weight = gr.Slider(0, 1, 0.25, label="Helpfulness Weight")
quality_btn = gr.Button("Assess Quality", variant="primary")
with gr.Column():
quality_output = gr.Textbox(label="Quality Assessment", lines=12)
quality_radar = gr.Plot(label="Quality Factors Radar Chart")
quality_btn.click(
quality_assessment_interface,
inputs=[quality_input, quality_csv, length_weight, detail_weight, structure_weight, help_weight],
outputs=[quality_output, quality_radar]
)
with gr.Tab("π Competitor Comparison"):
gr.Markdown("### Compare sentiment between competing products")
with gr.Row():
with gr.Column():
comp_product_a = gr.Textbox(
lines=8,
placeholder="Product A reviews...",
label="Product A Reviews"
)
comp_product_b = gr.Textbox(
lines=8,
placeholder="Product B reviews...",
label="Product B Reviews"
)
comp_btn = gr.Button("Compare Products", variant="primary")
with gr.Column():
comp_output = gr.Textbox(label="Comparison Results", lines=15)
comp_chart = gr.Plot(label="Comparison Chart")
comp_btn.click(
competitor_comparison_interface,
inputs=[comp_product_a, comp_product_b],
outputs=[comp_output, comp_chart]
)
with gr.Tab("π Report Generation"):
gr.Markdown("### Generate professional analysis reports")
with gr.Row():
with gr.Column():
report_data = gr.Textbox(
lines=10,
placeholder="Paste analysis results here...",
label="Analysis Data (JSON)"
)
report_type = gr.Dropdown(
choices=["sentiment", "fake", "quality"],
value="sentiment",
label="Report Type"
)
report_btn = gr.Button("Generate Report", variant="primary")
with gr.Column():
report_output = gr.Textbox(label="Generated Report", lines=15)
report_btn.click(
generate_report_interface,
inputs=[report_data, report_type],
outputs=[report_output]
)
if __name__ == "__main__":
demo.launch() |