File size: 43,095 Bytes
4e25610
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
285b200
 
4e25610
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
d7cd2ec
4e25610
d7cd2ec
4e25610
d7cd2ec
 
 
 
 
 
4e25610
 
 
 
 
 
 
866f669
4e25610
 
 
 
 
 
 
 
866f669
 
 
 
 
4e25610
 
 
866f669
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
4e25610
 
 
 
 
 
 
 
 
 
 
866f669
4e25610
 
 
 
 
866f669
4e25610
866f669
 
 
 
 
4e25610
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
d7cd2ec
 
 
 
 
 
 
 
 
 
 
 
4e25610
866f669
 
 
 
 
 
4e25610
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
d7cd2ec
4e25610
 
d7cd2ec
4e25610
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
866f669
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
4e25610
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
866f669
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
4e25610
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
d7cd2ec
4e25610
708f019
 
 
 
 
 
 
285b200
 
708f019
 
 
4e25610
 
 
 
 
 
708f019
4e25610
 
 
 
 
 
 
 
 
 
 
866f669
 
4e25610
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
d7cd2ec
4e25610
 
 
d7cd2ec
4e25610
866f669
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
4e25610
866f669
4e25610
 
 
 
 
866f669
 
 
4e25610
866f669
 
 
 
 
4e25610
866f669
 
 
 
4e25610
866f669
 
 
 
4e25610
 
866f669
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
4e25610
 
 
 
 
 
 
 
 
866f669
 
 
 
 
 
 
 
 
 
 
 
 
 
4e25610
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
866f669
 
 
 
 
 
 
 
 
 
 
 
4e25610
 
285b200
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
4e25610
 
866f669
 
 
 
 
285b200
4e25610
866f669
 
 
4e25610
 
 
 
 
 
 
 
 
 
 
 
866f669
708f019
4e25610
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
866f669
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
4e25610
 
 
 
 
866f669
 
4e25610
 
866f669
 
 
 
 
 
4e25610
 
 
 
866f669
 
4e25610
 
 
d7cd2ec
4e25610
 
866f669
 
 
 
 
 
 
 
 
 
 
 
 
 
 
4e25610
 
 
 
 
866f669
 
 
 
 
 
 
 
 
 
 
4e25610
 
 
 
 
866f669
 
 
 
 
4e25610
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917
918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
966
967
968
969
970
971
972
973
974
975
976
977
978
979
980
981
982
983
984
985
986
987
988
989
990
991
992
993
994
995
996
997
998
999
1000
1001
1002
1003
1004
1005
1006
1007
1008
1009
1010
1011
1012
1013
1014
1015
1016
1017
1018
1019
1020
1021
1022
1023
1024
1025
1026
1027
1028
1029
1030
1031
1032
1033
1034
1035
1036
1037
1038
1039
1040
1041
1042
1043
1044
1045
1046
1047
1048
1049
1050
1051
1052
1053
1054
1055
1056
1057
1058
1059
1060
1061
1062
1063
1064
1065
1066
1067
1068
1069
1070
1071
1072
1073
1074
1075
1076
1077
1078
1079
1080
1081
1082
1083
1084
1085
1086
1087
1088
1089
1090
1091
1092
1093
1094
1095
1096
1097
1098
1099
1100
1101
1102
1103
1104
1105
1106
1107
1108
1109
1110
1111
1112
1113
1114
1115
1116
1117
1118
1119
1120
1121
1122
1123
1124
1125
1126
1127
1128
1129
1130
1131
1132
1133
1134
1135
1136
1137
1138
1139
1140
1141
1142
1143
1144
1145
1146
1147
1148
1149
1150
1151
1152
1153
import torch
import gradio as gr
from transformers import AutoTokenizer, AutoModelForSequenceClassification
import plotly.graph_objects as go
import plotly.express as px
from plotly.subplots import make_subplots
import numpy as np
from wordcloud import WordCloud
from collections import Counter, defaultdict
import re
import json
import csv
import io
import tempfile
from datetime import datetime
import logging
from functools import lru_cache
from dataclasses import dataclass
from typing import List, Dict, Optional, Tuple
import nltk
from nltk.corpus import stopwords
import langdetect
import pandas as pd

# Configuration
@dataclass
class Config:
    MAX_HISTORY_SIZE: int = 500
    BATCH_SIZE_LIMIT: int = 30
    MAX_TEXT_LENGTH: int = 512
    CACHE_SIZE: int = 64
    
    # Supported languages and models
    SUPPORTED_LANGUAGES = {
        'auto': 'Auto Detect',
        'en': 'English',
        'zh': 'Chinese',
        'es': 'Spanish',
        'fr': 'French',
        'de': 'German',
        'sv': 'Swedish'
    }
    
    MODELS = {
        'en': "cardiffnlp/twitter-roberta-base-sentiment-latest",
        'multilingual': "cardiffnlp/twitter-xlm-roberta-base-sentiment"
    }
    
    # Color themes
    THEMES = {
        'default': {'pos': '#4CAF50', 'neg': '#F44336', 'neu': '#FF9800'},
        'ocean': {'pos': '#0077BE', 'neg': '#FF6B35', 'neu': '#00BCD4'},
        'dark': {'pos': '#66BB6A', 'neg': '#EF5350', 'neu': '#FFA726'},
        'rainbow': {'pos': '#9C27B0', 'neg': '#E91E63', 'neu': '#FF5722'}
    }

config = Config()

# Logging setup
logging.basicConfig(level=logging.INFO)
logger = logging.getLogger(__name__)

# Initialize NLTK
try:
    nltk.download('stopwords', quiet=True)
    nltk.download('punkt', quiet=True)
    STOP_WORDS = set(stopwords.words('english'))
except:
    STOP_WORDS = {'the', 'a', 'an', 'and', 'or', 'but', 'in', 'on', 'at', 'to', 'for', 'of', 'with', 'by'}

class ModelManager:
    """Manages multiple language models"""
    def __init__(self):
        self.models = {}
        self.tokenizers = {}
        self.device = torch.device("cuda" if torch.cuda.is_available() else "cpu")
        self._load_default_model()
    
    def _load_default_model(self):
        """Load the default English model"""
        try:
            model_name = config.MODELS['multilingual']  # Use multilingual as default
            self.tokenizers['default'] = AutoTokenizer.from_pretrained(model_name)
            self.models['default'] = AutoModelForSequenceClassification.from_pretrained(model_name)
            self.models['default'].to(self.device)
            logger.info(f"Default model loaded: {model_name}")
        except Exception as e:
            logger.error(f"Failed to load default model: {e}")
            raise
    
    def get_model(self, language='en'):
        """Get model for specific language"""
        if language in ['en', 'auto'] or language not in config.SUPPORTED_LANGUAGES:
            return self.models['default'], self.tokenizers['default']
        return self.models['default'], self.tokenizers['default']  # Use multilingual for all
    
    @staticmethod
    def detect_language(text: str) -> str:
        """Detect text language properly"""
        try:
            # Use langdetect for all languages
            detected = langdetect.detect(text)
            # Map some common langdetect codes to our supported languages
            language_mapping = {
                'zh-cn': 'zh',
                'zh-tw': 'zh'
            }
            detected = language_mapping.get(detected, detected)
            return detected if detected in config.SUPPORTED_LANGUAGES else 'en'
        except:
            return 'en'

model_manager = ModelManager()

class HistoryManager:
    """Enhanced history manager with more features"""
    def __init__(self):
        self._history = []
    
    def add_entry(self, entry: Dict):
        self._history.append(entry)
        if len(self._history) > config.MAX_HISTORY_SIZE:
            self._history = self._history[-config.MAX_HISTORY_SIZE:]
    
    def add_batch_entries(self, entries: List[Dict]):
        """Add multiple entries at once"""
        for entry in entries:
            self.add_entry(entry)
    
    def get_history(self) -> List[Dict]:
        return self._history.copy()
    
    def get_recent_history(self, n: int = 10) -> List[Dict]:
        """Get n most recent entries"""
        return self._history[-n:] if self._history else []
    
    def filter_history(self, sentiment: str = None, language: str = None, 
                      min_confidence: float = None) -> List[Dict]:
        """Filter history by criteria"""
        filtered = self._history
        
        if sentiment:
            filtered = [h for h in filtered if h['sentiment'] == sentiment]
        if language:
            filtered = [h for h in filtered if h.get('language', 'en') == language]
        if min_confidence:
            filtered = [h for h in filtered if h['confidence'] >= min_confidence]
            
        return filtered
    
    def clear(self) -> int:
        count = len(self._history)
        self._history.clear()
        return count
    
    def get_stats(self) -> Dict:
        if not self._history:
            return {}
        
        sentiments = [item['sentiment'] for item in self._history]
        confidences = [item['confidence'] for item in self._history]
        languages = [item.get('language', 'en') for item in self._history]
        
        return {
            'total_analyses': len(self._history),
            'positive_count': sentiments.count('Positive'),
            'negative_count': sentiments.count('Negative'),
            'neutral_count': sentiments.count('Neutral'),
            'avg_confidence': np.mean(confidences),
            'max_confidence': np.max(confidences),
            'min_confidence': np.min(confidences),
            'languages_detected': len(set(languages)),
            'most_common_language': Counter(languages).most_common(1)[0][0] if languages else 'en',
            'avg_text_length': np.mean([len(item.get('full_text', '')) for item in self._history])
        }

history_manager = HistoryManager()

class TextProcessor:
    """Enhanced text processing"""
    
    @staticmethod
    @lru_cache(maxsize=config.CACHE_SIZE)
    def clean_text(text: str, remove_punctuation: bool = True, remove_numbers: bool = False) -> str:
        """Clean text with options"""
        text = text.lower().strip()
        
        if remove_numbers:
            text = re.sub(r'\d+', '', text)
        
        if remove_punctuation:
            text = re.sub(r'[^\w\s]', '', text)
        
        words = text.split()
        cleaned_words = [w for w in words if w not in STOP_WORDS and len(w) > 2]
        return ' '.join(cleaned_words)
    
    @staticmethod
    def extract_keywords(text: str, top_k: int = 5) -> List[str]:
        """Extract key words from text"""
        # For Chinese text, extract characters
        if re.search(r'[\u4e00-\u9fff]', text):
            words = re.findall(r'[\u4e00-\u9fff]+', text)
            all_chars = ''.join(words)
            char_freq = Counter(all_chars)
            return [char for char, _ in char_freq.most_common(top_k)]
        else:
            # For other languages, use word-based extraction
            cleaned = TextProcessor.clean_text(text)
            words = cleaned.split()
            word_freq = Counter(words)
            return [word for word, _ in word_freq.most_common(top_k)]

    @staticmethod
    def parse_batch_input(text: str) -> List[str]:
        """Parse batch input from textarea"""
        lines = text.strip().split('\n')
        return [line.strip() for line in lines if line.strip()]

class SentimentAnalyzer:
    """Enhanced sentiment analysis"""
    
    @staticmethod
    def analyze_text(text: str, language: str = 'auto', preprocessing_options: Dict = None) -> Dict:
        """Analyze single text with language support"""
        if not text.strip():
            raise ValueError("Empty text provided")
        
        # Detect language if auto
        if language == 'auto':
            detected_lang = model_manager.detect_language(text)
        else:
            detected_lang = language
        
        # Get appropriate model
        model, tokenizer = model_manager.get_model(detected_lang)
        
        # Preprocessing options - don't clean Chinese text
        options = preprocessing_options or {}
        processed_text = text
        if options.get('clean_text', False) and not re.search(r'[\u4e00-\u9fff]', text):
            processed_text = TextProcessor.clean_text(
                text, 
                options.get('remove_punctuation', True),
                options.get('remove_numbers', False)
            )
        
        try:
            # Tokenize and analyze
            inputs = tokenizer(processed_text, return_tensors="pt", padding=True, 
                             truncation=True, max_length=config.MAX_TEXT_LENGTH).to(model_manager.device)
            
            with torch.no_grad():
                outputs = model(**inputs)
                probs = torch.nn.functional.softmax(outputs.logits, dim=-1).cpu().numpy()[0]
                
            # Handle different model outputs
            if len(probs) == 3:  # negative, neutral, positive
                sentiment_idx = np.argmax(probs)
                sentiment_labels = ['Negative', 'Neutral', 'Positive']
                sentiment = sentiment_labels[sentiment_idx]
                confidence = float(probs[sentiment_idx])
                
                result = {
                    'sentiment': sentiment,
                    'confidence': confidence,
                    'neg_prob': float(probs[0]),
                    'neu_prob': float(probs[1]),
                    'pos_prob': float(probs[2]),
                    'has_neutral': True
                }
            else:  # negative, positive
                pred = np.argmax(probs)
                sentiment = "Positive" if pred == 1 else "Negative"
                confidence = float(probs[pred])
                
                result = {
                    'sentiment': sentiment,
                    'confidence': confidence,
                    'neg_prob': float(probs[0]),
                    'pos_prob': float(probs[1]),
                    'neu_prob': 0.0,
                    'has_neutral': False
                }
            
            # Add metadata
            result.update({
                'language': detected_lang,
                'keywords': TextProcessor.extract_keywords(text),
                'word_count': len(text.split()),
                'char_count': len(text)
            })
            
            return result
            
        except Exception as e:
            logger.error(f"Analysis failed: {e}")
            raise

    @staticmethod
    def analyze_batch(texts: List[str], language: str = 'auto', 
                     preprocessing_options: Dict = None) -> List[Dict]:
        """Analyze multiple texts"""
        results = []
        for i, text in enumerate(texts):
            try:
                result = SentimentAnalyzer.analyze_text(text, language, preprocessing_options)
                result['batch_index'] = i
                results.append(result)
            except Exception as e:
                # Add error result
                results.append({
                    'sentiment': 'Error',
                    'confidence': 0.0,
                    'error': str(e),
                    'batch_index': i,
                    'text': text
                })
        return results

class PlotlyVisualizer:
    """Enhanced visualizations with Plotly"""
    
    @staticmethod
    def create_sentiment_gauge(result: Dict, theme: str = 'default') -> go.Figure:
        """Create an animated sentiment gauge"""
        colors = config.THEMES[theme]
        
        if result['has_neutral']:
            # Three-way gauge
            fig = go.Figure(go.Indicator(
                mode = "gauge+number+delta",
                value = result['pos_prob'] * 100,
                domain = {'x': [0, 1], 'y': [0, 1]},
                title = {'text': f"Sentiment: {result['sentiment']}"},
                delta = {'reference': 50},
                gauge = {
                    'axis': {'range': [None, 100]},
                    'bar': {'color': colors['pos'] if result['sentiment'] == 'Positive' else colors['neg']},
                    'steps': [
                        {'range': [0, 33], 'color': colors['neg']},
                        {'range': [33, 67], 'color': colors['neu']},
                        {'range': [67, 100], 'color': colors['pos']}
                    ],
                    'threshold': {
                        'line': {'color': "red", 'width': 4},
                        'thickness': 0.75,
                        'value': 90
                    }
                }
            ))
        else:
            # Two-way gauge
            fig = go.Figure(go.Indicator(
                mode = "gauge+number",
                value = result['confidence'] * 100,
                domain = {'x': [0, 1], 'y': [0, 1]},
                title = {'text': f"Confidence: {result['sentiment']}"},
                gauge = {
                    'axis': {'range': [None, 100]},
                    'bar': {'color': colors['pos'] if result['sentiment'] == 'Positive' else colors['neg']},
                    'steps': [
                        {'range': [0, 50], 'color': "lightgray"},
                        {'range': [50, 100], 'color': "gray"}
                    ]
                }
            ))
        
        fig.update_layout(height=400, font={'size': 16})
        return fig
    
    @staticmethod
    def create_probability_bars(result: Dict, theme: str = 'default') -> go.Figure:
        """Create probability bar chart"""
        colors = config.THEMES[theme]
        
        if result['has_neutral']:
            labels = ['Negative', 'Neutral', 'Positive']
            values = [result['neg_prob'], result['neu_prob'], result['pos_prob']]
            bar_colors = [colors['neg'], colors['neu'], colors['pos']]
        else:
            labels = ['Negative', 'Positive']
            values = [result['neg_prob'], result['pos_prob']]
            bar_colors = [colors['neg'], colors['pos']]
        
        fig = go.Figure(data=[
            go.Bar(x=labels, y=values, marker_color=bar_colors, text=[f'{v:.3f}' for v in values])
        ])
        
        fig.update_traces(texttemplate='%{text}', textposition='outside')
        fig.update_layout(
            title="Sentiment Probabilities",
            yaxis_title="Probability",
            height=400,
            showlegend=False
        )
        
        return fig

    @staticmethod
    def create_batch_summary(results: List[Dict], theme: str = 'default') -> go.Figure:
        """Create batch analysis summary"""
        colors = config.THEMES[theme]
        
        # Count sentiments
        sentiments = [r['sentiment'] for r in results if 'sentiment' in r]
        sentiment_counts = Counter(sentiments)
        
        # Create pie chart
        fig = go.Figure(data=[go.Pie(
            labels=list(sentiment_counts.keys()),
            values=list(sentiment_counts.values()),
            marker_colors=[colors.get(s.lower()[:3], '#999999') for s in sentiment_counts.keys()],
            textinfo='label+percent',
            hole=0.3
        )])
        
        fig.update_layout(
            title=f"Batch Analysis Summary ({len(results)} texts)",
            height=400
        )
        
        return fig

    @staticmethod
    def create_confidence_distribution(results: List[Dict]) -> go.Figure:
        """Create confidence distribution plot"""
        confidences = [r['confidence'] for r in results if 'confidence' in r and r['sentiment'] != 'Error']
        
        if not confidences:
            return go.Figure()
        
        fig = go.Figure(data=[go.Histogram(
            x=confidences,
            nbinsx=20,
            marker_color='skyblue',
            opacity=0.7
        )])
        
        fig.update_layout(
            title="Confidence Distribution",
            xaxis_title="Confidence Score",
            yaxis_title="Frequency",
            height=400
        )
        
        return fig
    
    @staticmethod
    def create_history_dashboard(history: List[Dict]) -> go.Figure:
        """Create comprehensive history dashboard"""
        if len(history) < 2:
            return go.Figure()
        
        # Create subplots
        fig = make_subplots(
            rows=2, cols=2,
            subplot_titles=['Sentiment Timeline', 'Confidence Distribution', 
                           'Language Distribution', 'Sentiment Summary'],
            specs=[[{"secondary_y": False}, {"secondary_y": False}],
                   [{"type": "pie"}, {"type": "bar"}]]
        )
        
        # Extract data
        indices = list(range(len(history)))
        pos_probs = [item['pos_prob'] for item in history]
        confidences = [item['confidence'] for item in history]
        sentiments = [item['sentiment'] for item in history]
        languages = [item.get('language', 'en') for item in history]
        
        # Sentiment timeline
        colors = ['#4CAF50' if s == 'Positive' else '#F44336' for s in sentiments]
        fig.add_trace(
            go.Scatter(x=indices, y=pos_probs, mode='lines+markers', 
                      marker=dict(color=colors, size=8),
                      name='Positive Probability'),
            row=1, col=1
        )
        
        # Confidence distribution
        fig.add_trace(
            go.Histogram(x=confidences, nbinsx=10, name='Confidence'),
            row=1, col=2
        )
        
        # Language distribution
        lang_counts = Counter(languages)
        fig.add_trace(
            go.Pie(labels=list(lang_counts.keys()), values=list(lang_counts.values()),
                   name="Languages"),
            row=2, col=1
        )
        
        # Sentiment summary
        sent_counts = Counter(sentiments)
        fig.add_trace(
            go.Bar(x=list(sent_counts.keys()), y=list(sent_counts.values()),
                   marker_color=['#4CAF50' if k == 'Positive' else '#F44336' for k in sent_counts.keys()]),
            row=2, col=2
        )
        
        fig.update_layout(height=800, showlegend=False)
        return fig

# Main application functions
def analyze_single_text(text: str, language: str, theme: str, clean_text: bool, 
                       remove_punct: bool, remove_nums: bool):
    """Enhanced single text analysis"""
    try:
        if not text.strip():
            return "Please enter text", None, None
        
        # Map display names back to language codes
        language_map = {
            'Auto Detect': 'auto',
            'English': 'en',
            'Chinese': 'zh',
            'Spanish': 'es',
            'French': 'fr',
            'German': 'de',
            'Swedish': 'sv'
        }
        language_code = language_map.get(language, 'auto')
        
        preprocessing_options = {
            'clean_text': clean_text,
            'remove_punctuation': remove_punct,
            'remove_numbers': remove_nums
        }
        
        result = SentimentAnalyzer.analyze_text(text, language_code, preprocessing_options)
        
        # Add to history
        history_entry = {
            'text': text[:100] + '...' if len(text) > 100 else text,
            'full_text': text,
            'sentiment': result['sentiment'],
            'confidence': result['confidence'],
            'pos_prob': result['pos_prob'],
            'neg_prob': result['neg_prob'],
            'neu_prob': result.get('neu_prob', 0),
            'language': result['language'],
            'timestamp': datetime.now().isoformat(),
            'analysis_type': 'single'
        }
        history_manager.add_entry(history_entry)
        
        # Create visualizations
        gauge_fig = PlotlyVisualizer.create_sentiment_gauge(result, theme)
        bars_fig = PlotlyVisualizer.create_probability_bars(result, theme)
        
        # Create info text
        info_text = f"""
**Analysis Results:**
- **Sentiment:** {result['sentiment']} ({result['confidence']:.3f} confidence)
- **Language:** {result['language'].upper()}
- **Keywords:** {', '.join(result['keywords'])}
- **Stats:** {result['word_count']} words, {result['char_count']} characters
        """
        
        return info_text, gauge_fig, bars_fig
        
    except Exception as e:
        logger.error(f"Analysis failed: {e}")
        return f"Error: {str(e)}", None, None

def analyze_batch_texts(batch_text: str, language: str, theme: str, 
                       clean_text: bool, remove_punct: bool, remove_nums: bool):
    """Batch text analysis"""
    try:
        if not batch_text.strip():
            return "Please enter texts (one per line)", None, None, None
        
        # Parse batch input
        texts = TextProcessor.parse_batch_input(batch_text)
        
        if len(texts) > config.BATCH_SIZE_LIMIT:
            return f"Too many texts. Maximum {config.BATCH_SIZE_LIMIT} allowed.", None, None, None
        
        if not texts:
            return "No valid texts found", None, None, None
        
        # Map display names back to language codes
        language_map = {
            'Auto Detect': 'auto',
            'English': 'en',
            'Chinese': 'zh',
            'Spanish': 'es',
            'French': 'fr',
            'German': 'de',
            'Swedish': 'sv'
        }
        language_code = language_map.get(language, 'auto')
        
        preprocessing_options = {
            'clean_text': clean_text,
            'remove_punctuation': remove_punct,
            'remove_numbers': remove_nums
        }
        
        # Analyze all texts
        results = SentimentAnalyzer.analyze_batch(texts, language_code, preprocessing_options)
        
        # Add to history
        batch_entries = []
        for i, (text, result) in enumerate(zip(texts, results)):
            if 'error' not in result:
                entry = {
                    'text': text[:100] + '...' if len(text) > 100 else text,
                    'full_text': text,
                    'sentiment': result['sentiment'],
                    'confidence': result['confidence'],
                    'pos_prob': result['pos_prob'],
                    'neg_prob': result['neg_prob'],
                    'neu_prob': result.get('neu_prob', 0),
                    'language': result['language'],
                    'timestamp': datetime.now().isoformat(),
                    'analysis_type': 'batch',
                    'batch_index': i
                }
                batch_entries.append(entry)
        
        history_manager.add_batch_entries(batch_entries)
        
        # Create visualizations
        summary_fig = PlotlyVisualizer.create_batch_summary(results, theme)
        confidence_fig = PlotlyVisualizer.create_confidence_distribution(results)
        
        # Create results table
        df_data = []
        for i, (text, result) in enumerate(zip(texts, results)):
            if 'error' in result:
                df_data.append({
                    'Index': i+1,
                    'Text': text[:50] + '...' if len(text) > 50 else text,
                    'Sentiment': 'Error',
                    'Confidence': 0.0,
                    'Language': 'Unknown',
                    'Error': result['error']
                })
            else:
                df_data.append({
                    'Index': i+1,
                    'Text': text[:50] + '...' if len(text) > 50 else text,
                    'Sentiment': result['sentiment'],
                    'Confidence': f"{result['confidence']:.3f}",
                    'Language': result['language'].upper(),
                    'Keywords': ', '.join(result['keywords'][:3])
                })
        
        df = pd.DataFrame(df_data)
        
        # Summary info
        successful_results = [r for r in results if 'error' not in r]
        error_count = len(results) - len(successful_results)
        
        if successful_results:
            sentiment_counts = Counter([r['sentiment'] for r in successful_results])
            avg_confidence = np.mean([r['confidence'] for r in successful_results])
            
            summary_text = f"""
**Batch Analysis Summary:**
- **Total Texts:** {len(texts)}
- **Successful:** {len(successful_results)}
- **Errors:** {error_count}
- **Average Confidence:** {avg_confidence:.3f}
- **Sentiments:** {dict(sentiment_counts)}
            """
        else:
            summary_text = f"All {len(texts)} texts failed to analyze."
        
        return summary_text, df, summary_fig, confidence_fig
        
    except Exception as e:
        logger.error(f"Batch analysis failed: {e}")
        return f"Error: {str(e)}", None, None, None

def analyze_advanced_text(text: str, language: str, theme: str, include_keywords: bool,
                         keyword_count: int, min_confidence: float):
    """Advanced analysis with additional features"""
    try:
        if not text.strip():
            return "Please enter text", None, None
        
        # Map display names back to language codes
        language_map = {
            'Auto Detect': 'auto',
            'English': 'en',
            'Chinese': 'zh',
            'Spanish': 'es',
            'French': 'fr',
            'German': 'de',
            'Swedish': 'sv'
        }
        language_code = language_map.get(language, 'auto')
        
        result = SentimentAnalyzer.analyze_text(text, language_code)
        
        # Advanced keyword extraction
        if include_keywords:
            result['keywords'] = TextProcessor.extract_keywords(text, keyword_count)
        
        # Confidence filtering
        meets_confidence = result['confidence'] >= min_confidence
        
        # Add to history
        history_entry = {
            'text': text[:100] + '...' if len(text) > 100 else text,
            'full_text': text,
            'sentiment': result['sentiment'],
            'confidence': result['confidence'],
            'pos_prob': result['pos_prob'],
            'neg_prob': result['neg_prob'],
            'neu_prob': result.get('neu_prob', 0),
            'language': result['language'],
            'timestamp': datetime.now().isoformat(),
            'analysis_type': 'advanced',
            'meets_confidence_threshold': meets_confidence
        }
        history_manager.add_entry(history_entry)
        
        # Create visualizations
        gauge_fig = PlotlyVisualizer.create_sentiment_gauge(result, theme)
        bars_fig = PlotlyVisualizer.create_probability_bars(result, theme)
        
        # Create detailed info text
        confidence_status = "✅ High Confidence" if meets_confidence else "⚠️ Low Confidence"
        
        info_text = f"""
**Advanced Analysis Results:**
- **Sentiment:** {result['sentiment']} ({result['confidence']:.3f} confidence)
- **Confidence Status:** {confidence_status}
- **Language:** {result['language'].upper()}
- **Text Statistics:**
  - Words: {result['word_count']}
  - Characters: {result['char_count']}
  - Average word length: {result['char_count']/max(result['word_count'], 1):.1f}
        """
        
        if include_keywords:
            info_text += f"\n- **Top Keywords:** {', '.join(result['keywords'])}"
        
        if not meets_confidence:
            info_text += f"\n\n⚠️ **Note:** Confidence ({result['confidence']:.3f}) is below threshold ({min_confidence})"
        
        return info_text, gauge_fig, bars_fig
        
    except Exception as e:
        logger.error(f"Advanced analysis failed: {e}")
        return f"Error: {str(e)}", None, None

def get_history_stats():
    """Get enhanced history statistics"""
    stats = history_manager.get_stats()
    if not stats:
        return "No analysis history available"
    
    return f"""
**Comprehensive History Statistics:**

**Analysis Counts:**
- Total Analyses: {stats['total_analyses']}
- Positive: {stats['positive_count']}
- Negative: {stats['negative_count']}
- Neutral: {stats['neutral_count']}

**Confidence Metrics:**
- Average Confidence: {stats['avg_confidence']:.3f}
- Highest Confidence: {stats['max_confidence']:.3f}
- Lowest Confidence: {stats['min_confidence']:.3f}

**Language Statistics:**
- Languages Detected: {stats['languages_detected']}
- Most Common Language: {stats['most_common_language'].upper()}

**Text Statistics:**
- Average Text Length: {stats['avg_text_length']:.1f} characters
    """

def filter_history_display(sentiment_filter: str, language_filter: str, min_confidence: float):
    """Display filtered history"""
    # Convert filters
    sentiment = sentiment_filter if sentiment_filter != "All" else None
    language = language_filter.lower() if language_filter != "All" else None
    
    filtered_history = history_manager.filter_history(
        sentiment=sentiment,
        language=language,
        min_confidence=min_confidence if min_confidence > 0 else None
    )
    
    if not filtered_history:
        return "No entries match the filter criteria", None
    
    # Create DataFrame for display
    df_data = []
    for entry in filtered_history[-20:]:  # Show last 20 entries
        df_data.append({
            'Timestamp': entry['timestamp'][:16],  # YYYY-MM-DD HH:MM
            'Text': entry['text'],
            'Sentiment': entry['sentiment'],
            'Confidence': f"{entry['confidence']:.3f}",
            'Language': entry['language'].upper(),
            'Type': entry.get('analysis_type', 'single')
        })
    
    df = pd.DataFrame(df_data)
    
    summary = f"""
**Filtered Results:**
- Found {len(filtered_history)} entries matching criteria
- Showing most recent {min(20, len(filtered_history))} entries
    """
    
    return summary, df

def plot_history_dashboard():
    """Create history dashboard"""
    history = history_manager.get_history()
    if len(history) < 2:
        return None, "Need at least 2 analyses for dashboard"
    
    fig = PlotlyVisualizer.create_history_dashboard(history)
    return fig, f"Dashboard showing {len(history)} analyses"

def export_history_csv():
    """Export history to CSV"""
    history = history_manager.get_history()
    if not history:
        return None, "No history to export"
    
    try:
        df = pd.DataFrame(history)
        temp_file = tempfile.NamedTemporaryFile(delete=False, suffix='.csv', mode='w')
        df.to_csv(temp_file.name, index=False)
        return temp_file.name, f"Exported {len(history)} entries to CSV"
    except Exception as e:
        return None, f"Export failed: {str(e)}"

def export_history_excel():
    """Export history to Excel"""
    history = history_manager.get_history()
    if not history:
        return None, "No history to export"
    
    try:
        df = pd.DataFrame(history)
        temp_file = tempfile.NamedTemporaryFile(delete=False, suffix='.xlsx')
        df.to_excel(temp_file.name, index=False)
        return temp_file.name, f"Exported {len(history)} entries to Excel"
    except Exception as e:
        return None, f"Export failed: {str(e)}"

def clear_all_history():
    """Clear analysis history"""
    count = history_manager.clear()
    return f"Cleared {count} entries from history"

def get_recent_analyses():
    """Get recent analysis summary"""
    recent = history_manager.get_recent_history(10)
    if not recent:
        return "No recent analyses available"
    
    summary_text = "**Recent Analyses (Last 10):**\n\n"
    for i, entry in enumerate(recent, 1):
        summary_text += f"{i}. **{entry['sentiment']}** ({entry['confidence']:.3f}) - {entry['text']}\n"
    
    return summary_text

# Sample data
SAMPLE_TEXTS = [
    # Auto Detect
    ["The film had its moments, but overall it felt a bit too long and lacked emotional depth."],

    # English
    ["I was completely blown away by the movie — the performances were raw and powerful, and the story stayed with me long after the credits rolled."],

    # Chinese
    ["这部电影节奏拖沓,剧情老套,完全没有让我产生任何共鸣,是一次失望的观影体验。"],

    # Spanish
    ["Una obra maestra del cine contemporáneo, con actuaciones sobresalientes, un guion bien escrito y una dirección impecable."],

    # French
    ["Je m'attendais à beaucoup mieux. Le scénario était confus, les dialogues ennuyeux, et je me suis presque endormi au milieu du film."],

    # German
    ["Der Film war ein emotionales Erlebnis mit großartigen Bildern, einem mitreißenden Soundtrack und einer Geschichte, die zum Nachdenken anregt."],

    # Swedish
    ["Filmen var en besvikelse – tråkig handling, överdrivet skådespeleri och ett slut som inte gav något avslut alls."]
]

BATCH_SAMPLE = """I love this product! It works perfectly.
The service was terrible and slow.
Not sure if I like it or not.
Amazing quality and fast delivery!
Could be better, but it's okay."""

# Gradio Interface
with gr.Blocks(theme=gr.themes.Soft(), title="Advanced Multilingual Sentiment Analyzer") as demo:
    gr.Markdown("# 🎭 Advanced Multilingual Sentiment Analyzer")
    gr.Markdown("Comprehensive sentiment analysis with batch processing, advanced analytics, and multilingual support")
    
    with gr.Tab("📝 Single Analysis"):
        with gr.Row():
            with gr.Column(scale=2):
                text_input = gr.Textbox(
                    label="Text to Analyze",
                    placeholder="Enter your text here... (supports multiple languages)",
                    lines=4
                )
                
                with gr.Row():
                    language_select = gr.Dropdown(
                        choices=['Auto Detect', 'English', 'Chinese', 'Spanish', 'French', 'German', 'Swedish'],
                        value='Auto Detect',
                        label="Language"
                    )
                    theme_select = gr.Dropdown(
                        choices=list(config.THEMES.keys()),
                        value='default',
                        label="Theme"
                    )
                
                with gr.Row():
                    clean_text = gr.Checkbox(label="Clean Text", value=False)
                    remove_punct = gr.Checkbox(label="Remove Punctuation", value=True)
                    remove_nums = gr.Checkbox(label="Remove Numbers", value=False)
                
                analyze_btn = gr.Button("🔍 Analyze", variant="primary", size="lg")
                
                gr.Examples(
                    examples=SAMPLE_TEXTS,
                    inputs=text_input,
                    label="Sample Texts (Multiple Languages)"
                )
            
            with gr.Column(scale=1):
                result_info = gr.Markdown("Enter text and click Analyze")
        
        with gr.Row():
            gauge_plot = gr.Plot(label="Sentiment Gauge")
            bars_plot = gr.Plot(label="Probability Distribution")
    
    with gr.Tab("📊 Batch Analysis"):
        with gr.Row():
            with gr.Column(scale=2):
                batch_input = gr.Textbox(
                    label="Batch Text Input (One text per line)",
                    placeholder="Enter multiple texts, one per line...",
                    lines=8
                )
                
                with gr.Row():
                    batch_language = gr.Dropdown(
                        choices=['Auto Detect', 'English', 'Chinese', 'Spanish', 'French', 'German', 'Swedish'],
                        value='Auto Detect',
                        label="Language"
                    )
                    batch_theme = gr.Dropdown(
                        choices=list(config.THEMES.keys()),
                        value='default',
                        label="Theme"
                    )
                
                with gr.Row():
                    batch_clean = gr.Checkbox(label="Clean Text", value=False)
                    batch_remove_punct = gr.Checkbox(label="Remove Punctuation", value=True)
                    batch_remove_nums = gr.Checkbox(label="Remove Numbers", value=False)
                
                batch_analyze_btn = gr.Button("🔍 Analyze Batch", variant="primary", size="lg")
                
                gr.Examples(
                    examples=[[BATCH_SAMPLE]],
                    inputs=batch_input,
                    label="Sample Batch Input"
                )
            
            with gr.Column(scale=1):
                batch_summary = gr.Markdown("Enter texts and click Analyze Batch")
        
        with gr.Row():
            batch_results_table = gr.DataFrame(
                label="Detailed Results",
                interactive=False
            )
        
        with gr.Row():
            batch_summary_plot = gr.Plot(label="Sentiment Summary")
            batch_confidence_plot = gr.Plot(label="Confidence Distribution")
    
    with gr.Tab("🔬 Advanced Analysis"):
        with gr.Row():
            with gr.Column(scale=2):
                advanced_input = gr.Textbox(
                    label="Text for Advanced Analysis",
                    placeholder="Enter text for detailed analysis...",
                    lines=4
                )
                
                with gr.Row():
                    advanced_language = gr.Dropdown(
                        choices=['Auto Detect', 'English', 'Chinese', 'Spanish', 'French', 'German', 'Swedish'],
                        value='Auto Detect',
                        label="Language"
                    )
                    advanced_theme = gr.Dropdown(
                        choices=list(config.THEMES.keys()),
                        value='default',
                        label="Theme"
                    )
                
                with gr.Row():
                    include_keywords = gr.Checkbox(label="Extract Keywords", value=True)
                    keyword_count = gr.Slider(
                        minimum=3,
                        maximum=10,
                        value=5,
                        step=1,
                        label="Number of Keywords"
                    )
                
                min_confidence_slider = gr.Slider(
                    minimum=0.0,
                    maximum=1.0,
                    value=0.7,
                    step=0.1,
                    label="Minimum Confidence Threshold"
                )
                
                advanced_analyze_btn = gr.Button("🔬 Advanced Analyze", variant="primary", size="lg")
            
            with gr.Column(scale=1):
                advanced_result_info = gr.Markdown("Configure settings and click Advanced Analyze")
        
        with gr.Row():
            advanced_gauge_plot = gr.Plot(label="Sentiment Gauge")
            advanced_bars_plot = gr.Plot(label="Probability Distribution")
    
    with gr.Tab("📈 History & Analytics"):
        with gr.Row():
            with gr.Column():
                gr.Markdown("### 📊 Statistics")
                stats_btn = gr.Button("📈 Get Statistics")
                recent_btn = gr.Button("🕒 Recent Analyses")
                stats_output = gr.Markdown("Click 'Get Statistics' to view analysis history")
            
            with gr.Column():
                gr.Markdown("### 🔍 Filter History")
                with gr.Row():
                    sentiment_filter = gr.Dropdown(
                        choices=["All", "Positive", "Negative", "Neutral"],
                        value="All",
                        label="Filter by Sentiment"
                    )
                    language_filter = gr.Dropdown(
                        choices=["All", "English", "Chinese", "Spanish", "French", "German", "Swedish"],
                        value="All",
                        label="Filter by Language"
                    )
                
                confidence_filter = gr.Slider(
                    minimum=0.0,
                    maximum=1.0,
                    value=0.0,
                    step=0.1,
                    label="Minimum Confidence"
                )
                
                filter_btn = gr.Button("🔍 Filter History")
        
        with gr.Row():
            dashboard_btn = gr.Button("📊 View Dashboard")
            clear_btn = gr.Button("🗑️ Clear History", variant="stop")
        
        with gr.Row():
            export_csv_btn = gr.Button("📄 Export CSV")
            export_excel_btn = gr.Button("📊 Export Excel")
        
        dashboard_plot = gr.Plot(label="Analytics Dashboard")
        
        with gr.Row():
            filtered_results = gr.Markdown("Use filters to view specific entries")
            filtered_table = gr.DataFrame(label="Filtered History", interactive=False)
        
        csv_file = gr.File(label="Download CSV Report")
        excel_file = gr.File(label="Download Excel Report")
        history_status = gr.Textbox(label="Status", interactive=False)
    
    # Event handlers
    
    # Single Analysis
    analyze_btn.click(
        analyze_single_text,
        inputs=[text_input, language_select, theme_select, clean_text, remove_punct, remove_nums],
        outputs=[result_info, gauge_plot, bars_plot]
    )
    
    # Batch Analysis
    batch_analyze_btn.click(
        analyze_batch_texts,
        inputs=[batch_input, batch_language, batch_theme, batch_clean, batch_remove_punct, batch_remove_nums],
        outputs=[batch_summary, batch_results_table, batch_summary_plot, batch_confidence_plot]
    )
    
    # Advanced Analysis
    advanced_analyze_btn.click(
        analyze_advanced_text,
        inputs=[advanced_input, advanced_language, advanced_theme, include_keywords, keyword_count, min_confidence_slider],
        outputs=[advanced_result_info, advanced_gauge_plot, advanced_bars_plot]
    )
    
    # History & Analytics
    stats_btn.click(
        get_history_stats,
        outputs=stats_output
    )
    
    recent_btn.click(
        get_recent_analyses,
        outputs=stats_output
    )
    
    filter_btn.click(
        filter_history_display,
        inputs=[sentiment_filter, language_filter, confidence_filter],
        outputs=[filtered_results, filtered_table]
    )
    
    dashboard_btn.click(
        plot_history_dashboard,
        outputs=[dashboard_plot, history_status]
    )
    
    export_csv_btn.click(
        export_history_csv,
        outputs=[csv_file, history_status]
    )
    
    export_excel_btn.click(
        export_history_excel,
        outputs=[excel_file, history_status]
    )
    
    clear_btn.click(
        clear_all_history,
        outputs=history_status
    )

if __name__ == "__main__":
    demo.launch(share=True)