File size: 29,100 Bytes
4e25610 c74121f 4e25610 d3eb8f6 4e25610 a58e3ae 4e25610 a58e3ae d70aba4 4e25610 a58e3ae 4e25610 a58e3ae 4e25610 c74121f 4e25610 c74121f 4e25610 c74121f 4e25610 d3eb8f6 a58e3ae c74121f a58e3ae c74121f a58e3ae c74121f a58e3ae c74121f 4e25610 c74121f a58e3ae c74121f a58e3ae c74121f 5eb9344 c74121f 4e25610 c74121f d3eb8f6 4e25610 c74121f a58e3ae c74121f a58e3ae c74121f 4e25610 c74121f 4e25610 a58e3ae c74121f 4e25610 a58e3ae 4e25610 a58e3ae 4e25610 c74121f a58e3ae c74121f a58e3ae 4e25610 c74121f a58e3ae c74121f a58e3ae c74121f a58e3ae c74121f a58e3ae c74121f a58e3ae c74121f a58e3ae c74121f a58e3ae c74121f 4e25610 c74121f 4e25610 c74121f 4e25610 c74121f a58e3ae c74121f a58e3ae c74121f a58e3ae c74121f a58e3ae c74121f a58e3ae c74121f a58e3ae 4e25610 a58e3ae 4e25610 c74121f a58e3ae 866f669 c74121f be7d5b2 a58e3ae c74121f a58e3ae be7d5b2 a58e3ae c74121f a58e3ae c74121f a58e3ae d3eb8f6 a58e3ae c74121f be7d5b2 71b3ce2 a58e3ae c74121f 4e25610 c74121f a58e3ae c74121f a58e3ae c74121f a58e3ae c74121f a58e3ae c74121f a58e3ae c74121f a58e3ae c74121f a58e3ae c74121f a58e3ae c74121f a58e3ae c74121f a58e3ae c74121f a58e3ae c74121f a58e3ae c74121f a58e3ae c74121f a58e3ae c74121f a58e3ae c74121f a58e3ae c74121f a58e3ae c74121f 4e25610 c74121f 866f669 c74121f 866f669 c74121f 866f669 c74121f a58e3ae c74121f 866f669 c74121f a58e3ae c74121f d3eb8f6 c74121f d3eb8f6 c74121f a58e3ae c74121f a58e3ae c74121f a58e3ae c74121f a58e3ae c74121f d3eb8f6 a58e3ae c74121f a58e3ae c74121f 285b200 c74121f a58e3ae c74121f a58e3ae 4e25610 c74121f a58e3ae c74121f a58e3ae 4e25610 a58e3ae c74121f a58e3ae c74121f 4e25610 a58e3ae c74121f 4e25610 a58e3ae c74121f a58e3ae c74121f a58e3ae c74121f a58e3ae c74121f be7d5b2 a58e3ae c74121f a58e3ae c74121f a58e3ae c74121f a58e3ae c74121f 866f669 a58e3ae c74121f a58e3ae c74121f a58e3ae c74121f a58e3ae 866f669 c74121f 4e25610 c74121f a58e3ae 4e25610 c74121f a58e3ae 866f669 a58e3ae c74121f a58e3ae c74121f a58e3ae c74121f a58e3ae c74121f a58e3ae c74121f a58e3ae 4e25610 a58e3ae 4e25610 a58e3ae 4e25610 c74121f |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 643 644 645 646 647 648 649 650 651 652 653 654 655 656 657 658 659 660 661 662 663 664 665 666 667 668 669 670 671 672 673 674 675 676 677 678 679 680 681 682 683 684 685 686 687 688 689 690 691 692 693 694 695 696 697 698 699 700 701 702 703 704 705 706 707 708 709 710 711 712 713 714 715 716 717 718 719 720 721 722 723 724 725 726 727 |
import torch
import gradio as gr
from transformers import BertTokenizer, BertForSequenceClassification
import matplotlib.pyplot as plt
import numpy as np
from wordcloud import WordCloud
from collections import Counter, defaultdict
import re
import json
import csv
import io
import tempfile
from datetime import datetime
import logging
from functools import lru_cache, wraps
from dataclasses import dataclass
from typing import List, Dict, Optional, Tuple, Any, Callable
from contextlib import contextmanager
import gc
# Configuration
@dataclass
class Config:
MAX_HISTORY_SIZE: int = 1000
BATCH_SIZE_LIMIT: int = 50
MAX_TEXT_LENGTH: int = 512
MIN_WORD_LENGTH: int = 2
CACHE_SIZE: int = 128
BATCH_PROCESSING_SIZE: int = 8
# Visualization settings
FIGURE_SIZE_SINGLE: Tuple[int, int] = (8, 5)
FIGURE_SIZE_BATCH: Tuple[int, int] = (12, 8)
WORDCLOUD_SIZE: Tuple[int, int] = (10, 5)
THEMES = {
'default': {'pos': '#4ecdc4', 'neg': '#ff6b6b'},
'ocean': {'pos': '#0077be', 'neg': '#ff6b35'},
'forest': {'pos': '#228b22', 'neg': '#dc143c'},
'sunset': {'pos': '#ff8c00', 'neg': '#8b0000'}
}
STOP_WORDS = {
'the', 'a', 'an', 'and', 'or', 'but', 'in', 'on', 'at', 'to',
'for', 'of', 'with', 'by', 'is', 'are', 'was', 'were', 'be',
'been', 'have', 'has', 'had', 'will', 'would', 'could', 'should'
}
config = Config()
logger = logging.getLogger(__name__)
# Decorators and Context Managers
def handle_errors(default_return=None):
"""Centralized error handling decorator"""
def decorator(func: Callable) -> Callable:
@wraps(func)
def wrapper(*args, **kwargs):
try:
return func(*args, **kwargs)
except Exception as e:
logger.error(f"{func.__name__} failed: {e}")
return default_return if default_return is not None else f"Error: {str(e)}"
return wrapper
return decorator
@contextmanager
def managed_figure(*args, **kwargs):
"""Context manager for matplotlib figures to prevent memory leaks"""
fig = plt.figure(*args, **kwargs)
try:
yield fig
finally:
plt.close(fig)
gc.collect()
class ThemeContext:
"""Theme management context"""
def __init__(self, theme: str = 'default'):
self.theme = theme
self.colors = config.THEMES.get(theme, config.THEMES['default'])
# Lazy Model Manager
class ModelManager:
"""Lazy loading model manager"""
_instance = None
_model = None
_tokenizer = None
_device = None
def __new__(cls):
if cls._instance is None:
cls._instance = super().__new__(cls)
return cls._instance
@property
def model(self):
if self._model is None:
self._load_model()
return self._model
@property
def tokenizer(self):
if self._tokenizer is None:
self._load_model()
return self._tokenizer
@property
def device(self):
if self._device is None:
self._device = torch.device("cuda" if torch.cuda.is_available() else "cpu")
return self._device
def _load_model(self):
"""Load model and tokenizer"""
try:
self._device = torch.device("cuda" if torch.cuda.is_available() else "cpu")
self._tokenizer = BertTokenizer.from_pretrained("entropy25/sentimentanalysis")
self._model = BertForSequenceClassification.from_pretrained("entropy25/sentimentanalysis")
self._model.to(self._device)
logger.info(f"Model loaded on {self._device}")
except Exception as e:
logger.error(f"Model loading failed: {e}")
raise
# Simplified Core Classes
class TextProcessor:
"""Optimized text processing"""
@staticmethod
@lru_cache(maxsize=config.CACHE_SIZE)
def clean_text(text: str) -> Tuple[str, ...]:
"""Single-pass text cleaning"""
words = re.findall(r'\b\w{3,}\b', text.lower())
return tuple(w for w in words if w not in config.STOP_WORDS)
class HistoryManager:
"""Simplified history management"""
def __init__(self):
self._history = []
def add(self, entry: Dict):
self._history.append({**entry, 'timestamp': datetime.now().isoformat()})
if len(self._history) > config.MAX_HISTORY_SIZE:
self._history = self._history[-config.MAX_HISTORY_SIZE:]
def get_all(self) -> List[Dict]:
return self._history.copy()
def clear(self) -> int:
count = len(self._history)
self._history.clear()
return count
def size(self) -> int:
return len(self._history)
# Core Analysis Engine
class SentimentEngine:
"""Streamlined sentiment analysis with attention-based keyword extraction"""
def __init__(self):
self.model_manager = ModelManager()
def extract_key_words(self, text: str, top_k: int = 10) -> List[Tuple[str, float]]:
"""Extract contributing words using BERT attention weights"""
try:
inputs = self.model_manager.tokenizer(
text, return_tensors="pt", padding=True,
truncation=True, max_length=config.MAX_TEXT_LENGTH
).to(self.model_manager.device)
# Get model outputs with attention weights
with torch.no_grad():
outputs = self.model_manager.model(**inputs, output_attentions=True)
attention = outputs.attentions # Tuple of attention tensors for each layer
# Use the last layer's attention, average over all heads
last_attention = attention[-1] # Shape: [batch_size, num_heads, seq_len, seq_len]
avg_attention = last_attention.mean(dim=1) # Average over heads: [batch_size, seq_len, seq_len]
# Focus on attention to [CLS] token (index 0) as it represents the whole sequence
cls_attention = avg_attention[0, 0, :] # Attention from CLS to all tokens
# Get tokens and their attention scores
tokens = self.model_manager.tokenizer.convert_ids_to_tokens(inputs['input_ids'][0])
attention_scores = cls_attention.cpu().numpy()
# Filter out special tokens and combine subword tokens
word_scores = {}
current_word = ""
current_score = 0.0
for i, (token, score) in enumerate(zip(tokens, attention_scores)):
if token in ['[CLS]', '[SEP]', '[PAD]']:
continue
if token.startswith('##'):
# Subword token, add to current word
current_word += token[2:]
current_score = max(current_score, score) # Take max attention
else:
# New word, save previous if exists
if current_word and len(current_word) >= config.MIN_WORD_LENGTH:
word_scores[current_word.lower()] = current_score
current_word = token
current_score = score
# Don't forget the last word
if current_word and len(current_word) >= config.MIN_WORD_LENGTH:
word_scores[current_word.lower()] = current_score
# Filter out stop words and sort by attention score
filtered_words = {
word: score for word, score in word_scores.items()
if word not in config.STOP_WORDS and len(word) >= config.MIN_WORD_LENGTH
}
# Sort by attention score and return top_k
sorted_words = sorted(filtered_words.items(), key=lambda x: x[1], reverse=True)
return sorted_words[:top_k]
except Exception as e:
logger.error(f"Key word extraction failed: {e}")
return []
@handle_errors(default_return={'sentiment': 'Unknown', 'confidence': 0.0, 'key_words': []})
def analyze_single(self, text: str) -> Dict:
"""Analyze single text with key word extraction"""
if not text.strip():
raise ValueError("Empty text")
inputs = self.model_manager.tokenizer(
text, return_tensors="pt", padding=True,
truncation=True, max_length=config.MAX_TEXT_LENGTH
).to(self.model_manager.device)
with torch.no_grad():
outputs = self.model_manager.model(**inputs)
probs = torch.nn.functional.softmax(outputs.logits, dim=-1).cpu().numpy()[0]
sentiment = "Positive" if probs[1] > probs[0] else "Negative"
# Extract key contributing words
key_words = self.extract_key_words(text)
return {
'sentiment': sentiment,
'confidence': float(probs.max()),
'pos_prob': float(probs[1]),
'neg_prob': float(probs[0]),
'key_words': key_words
}
@handle_errors(default_return=[])
def analyze_batch(self, texts: List[str], progress_callback=None) -> List[Dict]:
"""Optimized batch processing with key words"""
if len(texts) > config.BATCH_SIZE_LIMIT:
texts = texts[:config.BATCH_SIZE_LIMIT]
results = []
batch_size = config.BATCH_PROCESSING_SIZE
for i in range(0, len(texts), batch_size):
batch = texts[i:i+batch_size]
if progress_callback:
progress_callback((i + len(batch)) / len(texts))
inputs = self.model_manager.tokenizer(
batch, return_tensors="pt", padding=True,
truncation=True, max_length=config.MAX_TEXT_LENGTH
).to(self.model_manager.device)
with torch.no_grad():
outputs = self.model_manager.model(**inputs)
probs = torch.nn.functional.softmax(outputs.logits, dim=-1).cpu().numpy()
for text, prob in zip(batch, probs):
sentiment = "Positive" if prob[1] > prob[0] else "Negative"
# Extract key words for each text in batch
key_words = self.extract_key_words(text, top_k=5) # Fewer for batch processing
results.append({
'text': text[:50] + '...' if len(text) > 50 else text,
'full_text': text,
'sentiment': sentiment,
'confidence': float(prob.max()),
'pos_prob': float(prob[1]),
'neg_prob': float(prob[0]),
'key_words': key_words
})
return results
# Unified Visualization System
class PlotFactory:
"""Factory for creating plots with proper memory management"""
@staticmethod
@handle_errors(default_return=None)
def create_sentiment_bars(probs: np.ndarray, theme: ThemeContext) -> plt.Figure:
"""Create sentiment probability bars"""
with managed_figure(figsize=config.FIGURE_SIZE_SINGLE) as fig:
ax = fig.add_subplot(111)
labels = ["Negative", "Positive"]
colors = [theme.colors['neg'], theme.colors['pos']]
bars = ax.bar(labels, probs, color=colors, alpha=0.8)
ax.set_title("Sentiment Probabilities", fontweight='bold')
ax.set_ylabel("Probability")
ax.set_ylim(0, 1)
# Add value labels
for bar, prob in zip(bars, probs):
ax.text(bar.get_x() + bar.get_width()/2., bar.get_height() + 0.02,
f'{prob:.3f}', ha='center', va='bottom', fontweight='bold')
fig.tight_layout()
return fig
@staticmethod
@handle_errors(default_return=None)
def create_confidence_gauge(confidence: float, sentiment: str, theme: ThemeContext) -> plt.Figure:
"""Create confidence gauge"""
with managed_figure(figsize=config.FIGURE_SIZE_SINGLE) as fig:
ax = fig.add_subplot(111)
# Create gauge
theta = np.linspace(0, np.pi, 100)
colors = [theme.colors['neg'] if i < 50 else theme.colors['pos'] for i in range(100)]
for i in range(len(theta)-1):
ax.fill_between([theta[i], theta[i+1]], [0, 0], [0.8, 0.8],
color=colors[i], alpha=0.7)
# Needle position
pos = np.pi * (0.5 + (0.4 if sentiment == 'Positive' else -0.4) * confidence)
ax.plot([pos, pos], [0, 0.6], 'k-', linewidth=6)
ax.plot(pos, 0.6, 'ko', markersize=10)
ax.set_xlim(0, np.pi)
ax.set_ylim(0, 1)
ax.set_title(f'{sentiment} - Confidence: {confidence:.3f}', fontweight='bold')
ax.set_xticks([0, np.pi/2, np.pi])
ax.set_xticklabels(['Negative', 'Neutral', 'Positive'])
ax.axis('off')
fig.tight_layout()
return fig
@staticmethod
@handle_errors(default_return=None)
def create_keyword_chart(key_words: List[Tuple[str, float]], sentiment: str, theme: ThemeContext) -> Optional[plt.Figure]:
"""Create horizontal bar chart for key contributing words"""
if not key_words:
return None
with managed_figure(figsize=config.FIGURE_SIZE_SINGLE) as fig:
ax = fig.add_subplot(111)
words = [word for word, score in key_words]
scores = [score for word, score in key_words]
# Choose color based on sentiment
color = theme.colors['pos'] if sentiment == 'Positive' else theme.colors['neg']
# Create horizontal bar chart
bars = ax.barh(range(len(words)), scores, color=color, alpha=0.7)
ax.set_yticks(range(len(words)))
ax.set_yticklabels(words)
ax.set_xlabel('Attention Weight')
ax.set_title(f'Top Contributing Words ({sentiment})', fontweight='bold')
# Add value labels on bars
for i, (bar, score) in enumerate(zip(bars, scores)):
ax.text(bar.get_width() + 0.001, bar.get_y() + bar.get_height()/2.,
f'{score:.3f}', ha='left', va='center', fontsize=9)
# Invert y-axis to show highest scoring word at top
ax.invert_yaxis()
ax.grid(axis='x', alpha=0.3)
fig.tight_layout()
return fig
@staticmethod
@handle_errors(default_return=None)
def create_wordcloud(text: str, sentiment: str, theme: ThemeContext) -> Optional[plt.Figure]:
"""Create word cloud"""
if len(text.split()) < 3:
return None
colormap = 'Greens' if sentiment == 'Positive' else 'Reds'
wc = WordCloud(width=800, height=400, background_color='white',
colormap=colormap, max_words=30).generate(text)
with managed_figure(figsize=config.WORDCLOUD_SIZE) as fig:
ax = fig.add_subplot(111)
ax.imshow(wc, interpolation='bilinear')
ax.axis('off')
ax.set_title(f'{sentiment} Word Cloud', fontweight='bold')
fig.tight_layout()
return fig
@staticmethod
@handle_errors(default_return=None)
def create_batch_analysis(results: List[Dict], theme: ThemeContext) -> plt.Figure:
"""Create comprehensive batch visualization"""
with managed_figure(figsize=config.FIGURE_SIZE_BATCH) as fig:
gs = fig.add_gridspec(2, 2, hspace=0.3, wspace=0.3)
# Sentiment distribution
ax1 = fig.add_subplot(gs[0, 0])
sent_counts = Counter([r['sentiment'] for r in results])
colors = [theme.colors['pos'], theme.colors['neg']]
ax1.pie(sent_counts.values(), labels=sent_counts.keys(),
autopct='%1.1f%%', colors=colors[:len(sent_counts)])
ax1.set_title('Sentiment Distribution')
# Confidence histogram
ax2 = fig.add_subplot(gs[0, 1])
confs = [r['confidence'] for r in results]
ax2.hist(confs, bins=8, alpha=0.7, color='skyblue', edgecolor='black')
ax2.set_title('Confidence Distribution')
ax2.set_xlabel('Confidence')
# Sentiment over time
ax3 = fig.add_subplot(gs[1, :])
pos_probs = [r['pos_prob'] for r in results]
indices = range(len(results))
colors_scatter = [theme.colors['pos'] if r['sentiment'] == 'Positive'
else theme.colors['neg'] for r in results]
ax3.scatter(indices, pos_probs, c=colors_scatter, alpha=0.7, s=60)
ax3.axhline(y=0.5, color='gray', linestyle='--', alpha=0.5)
ax3.set_title('Sentiment Progression')
ax3.set_xlabel('Review Index')
ax3.set_ylabel('Positive Probability')
return fig
# Unified Data Handler
class DataHandler:
"""Handles all data operations"""
@staticmethod
@handle_errors(default_return=(None, "Export failed"))
def export_data(data: List[Dict], format_type: str) -> Tuple[Optional[str], str]:
"""Universal data export"""
if not data:
return None, "No data to export"
temp_file = tempfile.NamedTemporaryFile(mode='w', delete=False,
suffix=f'.{format_type}', encoding='utf-8')
if format_type == 'csv':
writer = csv.writer(temp_file)
writer.writerow(['Timestamp', 'Text', 'Sentiment', 'Confidence', 'Pos_Prob', 'Neg_Prob', 'Key_Words'])
for entry in data:
writer.writerow([
entry.get('timestamp', ''),
entry.get('text', ''),
entry.get('sentiment', ''),
f"{entry.get('confidence', 0):.4f}",
f"{entry.get('pos_prob', 0):.4f}",
f"{entry.get('neg_prob', 0):.4f}",
"|".join([f"{word}:{score:.3f}" for word, score in entry.get('key_words', [])])
])
elif format_type == 'json':
json.dump(data, temp_file, indent=2, ensure_ascii=False)
temp_file.close()
return temp_file.name, f"Exported {len(data)} entries"
@staticmethod
@handle_errors(default_return="")
def process_file(file) -> str:
"""Process uploaded file"""
if not file:
return ""
content = file.read().decode('utf-8')
if file.name.endswith('.csv'):
import io
csv_file = io.StringIO(content)
reader = csv.reader(csv_file)
try:
next(reader)
texts = []
for row in reader:
if row and row[0].strip():
text = row[0].strip().strip('"')
if text:
texts.append(text)
return '\n'.join(texts)
except Exception as e:
lines = content.strip().split('\n')[1:]
texts = []
for line in lines:
if line.strip():
text = line.strip().strip('"')
if text:
texts.append(text)
return '\n'.join(texts)
return content
# Main Application
class SentimentApp:
"""Main application orchestrator"""
def __init__(self):
self.engine = SentimentEngine()
self.history = HistoryManager()
self.data_handler = DataHandler()
# Example data
self.examples = [
["While the film's visual effects were undeniably impressive, the story lacked emotional weight, and the pacing felt inconsistent throughout."],
["An extraordinary achievement in filmmaking — the direction was masterful, the script was sharp, and every performance added depth and realism."],
["Despite a promising start, the film quickly devolved into a series of clichés, with weak character development and an ending that felt rushed and unearned."],
["A beautifully crafted story with heartfelt moments and a soundtrack that perfectly captured the emotional tone of each scene."],
["The movie was far too long, with unnecessary subplots and dull dialogue that made it difficult to stay engaged until the end."]
]
@handle_errors(default_return=("Please enter text", None, None, None, None))
def analyze_single(self, text: str, theme: str = 'default'):
"""Single text analysis with key words"""
if not text.strip():
return "Please enter text", None, None, None, None
result = self.engine.analyze_single(text)
# Add to history
self.history.add({
'text': text[:100],
'full_text': text,
**result
})
# Create visualizations
theme_ctx = ThemeContext(theme)
probs = np.array([result['neg_prob'], result['pos_prob']])
prob_plot = PlotFactory.create_sentiment_bars(probs, theme_ctx)
gauge_plot = PlotFactory.create_confidence_gauge(result['confidence'], result['sentiment'], theme_ctx)
cloud_plot = PlotFactory.create_wordcloud(text, result['sentiment'], theme_ctx)
keyword_plot = PlotFactory.create_keyword_chart(result['key_words'], result['sentiment'], theme_ctx)
# Format result text with key words
key_words_str = ", ".join([f"{word}({score:.3f})" for word, score in result['key_words'][:5]])
result_text = (f"Sentiment: {result['sentiment']} (Confidence: {result['confidence']:.3f})\n"
f"Key Words: {key_words_str}")
return result_text, prob_plot, gauge_plot, cloud_plot, keyword_plot
@handle_errors(default_return=None)
def analyze_batch(self, reviews: str, progress=None):
"""Batch analysis"""
if not reviews.strip():
return None
texts = [r.strip() for r in reviews.split('\n') if r.strip()]
if len(texts) < 2:
return None
results = self.engine.analyze_batch(texts, progress)
# Add to history
for result in results:
self.history.add(result)
# Create visualization
theme_ctx = ThemeContext('default')
return PlotFactory.create_batch_analysis(results, theme_ctx)
@handle_errors(default_return=(None, "No history available"))
def plot_history(self, theme: str = 'default'):
"""Plot analysis history"""
history = self.history.get_all()
if len(history) < 2:
return None, f"Need at least 2 analyses for trends. Current: {len(history)}"
theme_ctx = ThemeContext(theme)
with managed_figure(figsize=(12, 8)) as fig:
gs = fig.add_gridspec(2, 1, hspace=0.3)
indices = list(range(len(history)))
pos_probs = [item['pos_prob'] for item in history]
confs = [item['confidence'] for item in history]
# Sentiment trend
ax1 = fig.add_subplot(gs[0, 0])
colors = [theme_ctx.colors['pos'] if p > 0.5 else theme_ctx.colors['neg']
for p in pos_probs]
ax1.scatter(indices, pos_probs, c=colors, alpha=0.7, s=60)
ax1.plot(indices, pos_probs, alpha=0.5, linewidth=2)
ax1.axhline(y=0.5, color='gray', linestyle='--', alpha=0.5)
ax1.set_title('Sentiment History')
ax1.set_ylabel('Positive Probability')
ax1.grid(True, alpha=0.3)
# Confidence trend
ax2 = fig.add_subplot(gs[1, 0])
ax2.bar(indices, confs, alpha=0.7, color='lightblue', edgecolor='navy')
ax2.set_title('Confidence Over Time')
ax2.set_xlabel('Analysis Number')
ax2.set_ylabel('Confidence')
ax2.grid(True, alpha=0.3)
fig.tight_layout()
return fig, f"History: {len(history)} analyses"
# Gradio Interface Setup
def create_interface():
"""Create streamlined Gradio interface"""
app = SentimentApp()
with gr.Blocks(theme=gr.themes.Soft(), title="Movie Sentiment Analyzer") as demo:
gr.Markdown("# 🎬 AI Movie Sentiment Analyzer")
gr.Markdown("Optimized sentiment analysis with advanced visualizations and key word extraction")
with gr.Tab("Single Analysis"):
with gr.Row():
with gr.Column():
text_input = gr.Textbox(
label="Movie Review",
placeholder="Enter your movie review...",
lines=5
)
with gr.Row():
analyze_btn = gr.Button("Analyze", variant="primary")
theme_selector = gr.Dropdown(
choices=list(config.THEMES.keys()),
value="default",
label="Theme"
)
gr.Examples(
examples=app.examples,
inputs=text_input
)
with gr.Column():
result_output = gr.Textbox(label="Result", lines=3)
with gr.Row():
prob_plot = gr.Plot(label="Probabilities")
gauge_plot = gr.Plot(label="Confidence")
with gr.Row():
wordcloud_plot = gr.Plot(label="Word Cloud")
keyword_plot = gr.Plot(label="Key Contributing Words")
with gr.Tab("Batch Analysis"):
with gr.Row():
with gr.Column():
file_upload = gr.File(label="Upload File", file_types=[".csv", ".txt"])
batch_input = gr.Textbox(
label="Reviews (one per line)",
lines=8
)
with gr.Column():
load_btn = gr.Button("Load File")
batch_btn = gr.Button("Analyze Batch", variant="primary")
batch_plot = gr.Plot(label="Batch Results")
with gr.Tab("History & Export"):
with gr.Row():
refresh_btn = gr.Button("Refresh")
clear_btn = gr.Button("Clear", variant="stop")
status_btn = gr.Button("Status")
with gr.Row():
csv_btn = gr.Button("Export CSV")
json_btn = gr.Button("Export JSON")
history_status = gr.Textbox(label="Status")
history_plot = gr.Plot(label="History Trends")
csv_file = gr.File(label="CSV Download", visible=True)
json_file = gr.File(label="JSON Download", visible=True)
# Event bindings
analyze_btn.click(
app.analyze_single,
inputs=[text_input, theme_selector],
outputs=[result_output, prob_plot, gauge_plot, wordcloud_plot, keyword_plot]
)
load_btn.click(app.data_handler.process_file, inputs=file_upload, outputs=batch_input)
batch_btn.click(app.analyze_batch, inputs=batch_input, outputs=batch_plot)
refresh_btn.click(
lambda theme: app.plot_history(theme),
inputs=theme_selector,
outputs=[history_plot, history_status]
)
clear_btn.click(
lambda: f"Cleared {app.history.clear()} entries",
outputs=history_status
)
status_btn.click(
lambda: f"History: {app.history.size()} entries",
outputs=history_status
)
csv_btn.click(
lambda: app.data_handler.export_data(app.history.get_all(), 'csv'),
outputs=[csv_file, history_status]
)
json_btn.click(
lambda: app.data_handler.export_data(app.history.get_all(), 'json'),
outputs=[json_file, history_status]
)
return demo
# Application Entry Point
if __name__ == "__main__":
logging.basicConfig(level=logging.INFO)
demo = create_interface()
demo.launch(share=True) |