File size: 29,100 Bytes
4e25610
 
c74121f
 
4e25610
d3eb8f6
4e25610
 
 
 
 
 
 
 
a58e3ae
4e25610
a58e3ae
 
 
d70aba4
4e25610
 
 
a58e3ae
 
4e25610
a58e3ae
 
 
4e25610
c74121f
 
 
 
4e25610
c74121f
 
 
 
 
4e25610
 
c74121f
 
 
 
4e25610
 
 
d3eb8f6
 
a58e3ae
 
 
 
 
 
 
 
 
 
 
 
 
 
 
c74121f
 
 
a58e3ae
c74121f
a58e3ae
c74121f
a58e3ae
 
 
 
 
 
 
 
c74121f
4e25610
c74121f
a58e3ae
c74121f
 
 
a58e3ae
 
 
 
 
 
c74121f
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
5eb9344
c74121f
 
 
 
 
4e25610
c74121f
d3eb8f6
4e25610
c74121f
a58e3ae
c74121f
a58e3ae
 
c74121f
 
 
 
4e25610
 
c74121f
4e25610
 
 
a58e3ae
c74121f
4e25610
 
 
a58e3ae
4e25610
 
 
 
 
 
 
a58e3ae
 
4e25610
c74121f
a58e3ae
c74121f
a58e3ae
 
4e25610
c74121f
 
a58e3ae
c74121f
a58e3ae
 
 
 
c74121f
a58e3ae
c74121f
 
a58e3ae
c74121f
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
a58e3ae
c74121f
 
 
 
 
 
a58e3ae
 
 
c74121f
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
a58e3ae
c74121f
 
4e25610
c74121f
 
 
4e25610
c74121f
4e25610
c74121f
 
 
 
a58e3ae
 
c74121f
a58e3ae
 
c74121f
a58e3ae
c74121f
 
a58e3ae
c74121f
 
 
 
 
 
 
a58e3ae
 
c74121f
 
a58e3ae
 
 
 
 
 
 
 
4e25610
a58e3ae
 
4e25610
c74121f
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
a58e3ae
866f669
 
c74121f
 
 
be7d5b2
 
a58e3ae
c74121f
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
a58e3ae
be7d5b2
a58e3ae
c74121f
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
a58e3ae
 
 
 
c74121f
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
a58e3ae
d3eb8f6
a58e3ae
c74121f
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
be7d5b2
71b3ce2
a58e3ae
c74121f
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
4e25610
c74121f
a58e3ae
c74121f
a58e3ae
 
 
 
c74121f
a58e3ae
 
 
 
 
 
 
 
c74121f
a58e3ae
 
 
 
 
 
 
 
c74121f
a58e3ae
 
 
 
 
 
 
c74121f
a58e3ae
 
 
c74121f
a58e3ae
 
c74121f
a58e3ae
 
 
c74121f
a58e3ae
 
 
c74121f
a58e3ae
 
 
 
c74121f
a58e3ae
 
c74121f
 
a58e3ae
 
 
 
 
 
 
 
 
c74121f
a58e3ae
c74121f
a58e3ae
 
 
 
 
 
c74121f
a58e3ae
c74121f
 
 
 
 
a58e3ae
c74121f
a58e3ae
c74121f
 
 
4e25610
c74121f
866f669
c74121f
866f669
c74121f
 
 
 
 
 
866f669
c74121f
a58e3ae
c74121f
866f669
c74121f
 
 
 
a58e3ae
c74121f
 
 
 
d3eb8f6
c74121f
d3eb8f6
c74121f
 
 
 
 
a58e3ae
c74121f
 
 
a58e3ae
c74121f
a58e3ae
c74121f
 
 
a58e3ae
c74121f
 
 
d3eb8f6
a58e3ae
 
c74121f
a58e3ae
 
 
 
 
 
c74121f
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
285b200
c74121f
a58e3ae
c74121f
a58e3ae
4e25610
c74121f
 
 
a58e3ae
 
 
 
 
c74121f
 
a58e3ae
4e25610
a58e3ae
c74121f
a58e3ae
 
 
 
 
 
 
 
c74121f
4e25610
 
a58e3ae
c74121f
4e25610
a58e3ae
c74121f
 
a58e3ae
 
c74121f
a58e3ae
 
 
 
 
c74121f
a58e3ae
c74121f
 
be7d5b2
 
a58e3ae
c74121f
 
a58e3ae
c74121f
a58e3ae
c74121f
a58e3ae
c74121f
 
 
866f669
a58e3ae
c74121f
 
 
 
 
 
 
a58e3ae
c74121f
a58e3ae
 
c74121f
 
a58e3ae
866f669
c74121f
 
4e25610
c74121f
 
 
 
a58e3ae
4e25610
c74121f
a58e3ae
 
 
866f669
a58e3ae
c74121f
a58e3ae
 
 
c74121f
a58e3ae
c74121f
a58e3ae
 
c74121f
a58e3ae
c74121f
a58e3ae
4e25610
a58e3ae
4e25610
a58e3ae
4e25610
c74121f
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
import torch
import gradio as gr
from transformers import BertTokenizer, BertForSequenceClassification
import matplotlib.pyplot as plt
import numpy as np
from wordcloud import WordCloud
from collections import Counter, defaultdict
import re
import json
import csv
import io
import tempfile
from datetime import datetime
import logging
from functools import lru_cache, wraps
from dataclasses import dataclass
from typing import List, Dict, Optional, Tuple, Any, Callable
from contextlib import contextmanager
import gc

# Configuration
@dataclass
class Config:
    MAX_HISTORY_SIZE: int = 1000
    BATCH_SIZE_LIMIT: int = 50
    MAX_TEXT_LENGTH: int = 512
    MIN_WORD_LENGTH: int = 2
    CACHE_SIZE: int = 128
    BATCH_PROCESSING_SIZE: int = 8
    
    # Visualization settings
    FIGURE_SIZE_SINGLE: Tuple[int, int] = (8, 5)
    FIGURE_SIZE_BATCH: Tuple[int, int] = (12, 8)
    WORDCLOUD_SIZE: Tuple[int, int] = (10, 5)
    
    THEMES = {
        'default': {'pos': '#4ecdc4', 'neg': '#ff6b6b'},
        'ocean': {'pos': '#0077be', 'neg': '#ff6b35'},
        'forest': {'pos': '#228b22', 'neg': '#dc143c'},
        'sunset': {'pos': '#ff8c00', 'neg': '#8b0000'}
    }
    
    STOP_WORDS = {
        'the', 'a', 'an', 'and', 'or', 'but', 'in', 'on', 'at', 'to', 
        'for', 'of', 'with', 'by', 'is', 'are', 'was', 'were', 'be', 
        'been', 'have', 'has', 'had', 'will', 'would', 'could', 'should'
    }

config = Config()
logger = logging.getLogger(__name__)

# Decorators and Context Managers
def handle_errors(default_return=None):
    """Centralized error handling decorator"""
    def decorator(func: Callable) -> Callable:
        @wraps(func)
        def wrapper(*args, **kwargs):
            try:
                return func(*args, **kwargs)
            except Exception as e:
                logger.error(f"{func.__name__} failed: {e}")
                return default_return if default_return is not None else f"Error: {str(e)}"
        return wrapper
    return decorator

@contextmanager
def managed_figure(*args, **kwargs):
    """Context manager for matplotlib figures to prevent memory leaks"""
    fig = plt.figure(*args, **kwargs)
    try:
        yield fig
    finally:
        plt.close(fig)
        gc.collect()

class ThemeContext:
    """Theme management context"""
    def __init__(self, theme: str = 'default'):
        self.theme = theme
        self.colors = config.THEMES.get(theme, config.THEMES['default'])

# Lazy Model Manager
class ModelManager:
    """Lazy loading model manager"""
    _instance = None
    _model = None
    _tokenizer = None
    _device = None
    
    def __new__(cls):
        if cls._instance is None:
            cls._instance = super().__new__(cls)
        return cls._instance
    
    @property
    def model(self):
        if self._model is None:
            self._load_model()
        return self._model
    
    @property
    def tokenizer(self):
        if self._tokenizer is None:
            self._load_model()
        return self._tokenizer
    
    @property
    def device(self):
        if self._device is None:
            self._device = torch.device("cuda" if torch.cuda.is_available() else "cpu")
        return self._device
    
    def _load_model(self):
        """Load model and tokenizer"""
        try:
            self._device = torch.device("cuda" if torch.cuda.is_available() else "cpu")
            self._tokenizer = BertTokenizer.from_pretrained("entropy25/sentimentanalysis")
            self._model = BertForSequenceClassification.from_pretrained("entropy25/sentimentanalysis")
            self._model.to(self._device)
            logger.info(f"Model loaded on {self._device}")
        except Exception as e:
            logger.error(f"Model loading failed: {e}")
            raise

# Simplified Core Classes
class TextProcessor:
    """Optimized text processing"""
    @staticmethod
    @lru_cache(maxsize=config.CACHE_SIZE)
    def clean_text(text: str) -> Tuple[str, ...]:
        """Single-pass text cleaning"""
        words = re.findall(r'\b\w{3,}\b', text.lower())
        return tuple(w for w in words if w not in config.STOP_WORDS)

class HistoryManager:
    """Simplified history management"""
    def __init__(self):
        self._history = []
    
    def add(self, entry: Dict):
        self._history.append({**entry, 'timestamp': datetime.now().isoformat()})
        if len(self._history) > config.MAX_HISTORY_SIZE:
            self._history = self._history[-config.MAX_HISTORY_SIZE:]
    
    def get_all(self) -> List[Dict]:
        return self._history.copy()
    
    def clear(self) -> int:
        count = len(self._history)
        self._history.clear()
        return count
    
    def size(self) -> int:
        return len(self._history)

# Core Analysis Engine
class SentimentEngine:
    """Streamlined sentiment analysis with attention-based keyword extraction"""
    def __init__(self):
        self.model_manager = ModelManager()
    
    def extract_key_words(self, text: str, top_k: int = 10) -> List[Tuple[str, float]]:
        """Extract contributing words using BERT attention weights"""
        try:
            inputs = self.model_manager.tokenizer(
                text, return_tensors="pt", padding=True, 
                truncation=True, max_length=config.MAX_TEXT_LENGTH
            ).to(self.model_manager.device)
            
            # Get model outputs with attention weights
            with torch.no_grad():
                outputs = self.model_manager.model(**inputs, output_attentions=True)
                attention = outputs.attentions  # Tuple of attention tensors for each layer
                
                # Use the last layer's attention, average over all heads
                last_attention = attention[-1]  # Shape: [batch_size, num_heads, seq_len, seq_len]
                avg_attention = last_attention.mean(dim=1)  # Average over heads: [batch_size, seq_len, seq_len]
                
                # Focus on attention to [CLS] token (index 0) as it represents the whole sequence
                cls_attention = avg_attention[0, 0, :]  # Attention from CLS to all tokens
                
            # Get tokens and their attention scores
            tokens = self.model_manager.tokenizer.convert_ids_to_tokens(inputs['input_ids'][0])
            attention_scores = cls_attention.cpu().numpy()
            
            # Filter out special tokens and combine subword tokens
            word_scores = {}
            current_word = ""
            current_score = 0.0
            
            for i, (token, score) in enumerate(zip(tokens, attention_scores)):
                if token in ['[CLS]', '[SEP]', '[PAD]']:
                    continue
                    
                if token.startswith('##'):
                    # Subword token, add to current word
                    current_word += token[2:]
                    current_score = max(current_score, score)  # Take max attention
                else:
                    # New word, save previous if exists
                    if current_word and len(current_word) >= config.MIN_WORD_LENGTH:
                        word_scores[current_word.lower()] = current_score
                    
                    current_word = token
                    current_score = score
            
            # Don't forget the last word
            if current_word and len(current_word) >= config.MIN_WORD_LENGTH:
                word_scores[current_word.lower()] = current_score
            
            # Filter out stop words and sort by attention score
            filtered_words = {
                word: score for word, score in word_scores.items() 
                if word not in config.STOP_WORDS and len(word) >= config.MIN_WORD_LENGTH
            }
            
            # Sort by attention score and return top_k
            sorted_words = sorted(filtered_words.items(), key=lambda x: x[1], reverse=True)
            return sorted_words[:top_k]
            
        except Exception as e:
            logger.error(f"Key word extraction failed: {e}")
            return []
    
    @handle_errors(default_return={'sentiment': 'Unknown', 'confidence': 0.0, 'key_words': []})
    def analyze_single(self, text: str) -> Dict:
        """Analyze single text with key word extraction"""
        if not text.strip():
            raise ValueError("Empty text")
        
        inputs = self.model_manager.tokenizer(
            text, return_tensors="pt", padding=True, 
            truncation=True, max_length=config.MAX_TEXT_LENGTH
        ).to(self.model_manager.device)
        
        with torch.no_grad():
            outputs = self.model_manager.model(**inputs)
            probs = torch.nn.functional.softmax(outputs.logits, dim=-1).cpu().numpy()[0]
        
        sentiment = "Positive" if probs[1] > probs[0] else "Negative"
        
        # Extract key contributing words
        key_words = self.extract_key_words(text)
        
        return {
            'sentiment': sentiment,
            'confidence': float(probs.max()),
            'pos_prob': float(probs[1]),
            'neg_prob': float(probs[0]),
            'key_words': key_words
        }
    
    @handle_errors(default_return=[])
    def analyze_batch(self, texts: List[str], progress_callback=None) -> List[Dict]:
        """Optimized batch processing with key words"""
        if len(texts) > config.BATCH_SIZE_LIMIT:
            texts = texts[:config.BATCH_SIZE_LIMIT]
        
        results = []
        batch_size = config.BATCH_PROCESSING_SIZE
        
        for i in range(0, len(texts), batch_size):
            batch = texts[i:i+batch_size]
            
            if progress_callback:
                progress_callback((i + len(batch)) / len(texts))
            
            inputs = self.model_manager.tokenizer(
                batch, return_tensors="pt", padding=True, 
                truncation=True, max_length=config.MAX_TEXT_LENGTH
            ).to(self.model_manager.device)
            
            with torch.no_grad():
                outputs = self.model_manager.model(**inputs)
                probs = torch.nn.functional.softmax(outputs.logits, dim=-1).cpu().numpy()
            
            for text, prob in zip(batch, probs):
                sentiment = "Positive" if prob[1] > prob[0] else "Negative"
                # Extract key words for each text in batch
                key_words = self.extract_key_words(text, top_k=5)  # Fewer for batch processing
                
                results.append({
                    'text': text[:50] + '...' if len(text) > 50 else text,
                    'full_text': text,
                    'sentiment': sentiment,
                    'confidence': float(prob.max()),
                    'pos_prob': float(prob[1]),
                    'neg_prob': float(prob[0]),
                    'key_words': key_words
                })
        
        return results

# Unified Visualization System
class PlotFactory:
    """Factory for creating plots with proper memory management"""
    
    @staticmethod
    @handle_errors(default_return=None)
    def create_sentiment_bars(probs: np.ndarray, theme: ThemeContext) -> plt.Figure:
        """Create sentiment probability bars"""
        with managed_figure(figsize=config.FIGURE_SIZE_SINGLE) as fig:
            ax = fig.add_subplot(111)
            labels = ["Negative", "Positive"]
            colors = [theme.colors['neg'], theme.colors['pos']]
            
            bars = ax.bar(labels, probs, color=colors, alpha=0.8)
            ax.set_title("Sentiment Probabilities", fontweight='bold')
            ax.set_ylabel("Probability")
            ax.set_ylim(0, 1)
            
            # Add value labels
            for bar, prob in zip(bars, probs):
                ax.text(bar.get_x() + bar.get_width()/2., bar.get_height() + 0.02,
                       f'{prob:.3f}', ha='center', va='bottom', fontweight='bold')
            
            fig.tight_layout()
            return fig
    
    @staticmethod
    @handle_errors(default_return=None)
    def create_confidence_gauge(confidence: float, sentiment: str, theme: ThemeContext) -> plt.Figure:
        """Create confidence gauge"""
        with managed_figure(figsize=config.FIGURE_SIZE_SINGLE) as fig:
            ax = fig.add_subplot(111)
            
            # Create gauge
            theta = np.linspace(0, np.pi, 100)
            colors = [theme.colors['neg'] if i < 50 else theme.colors['pos'] for i in range(100)]
            
            for i in range(len(theta)-1):
                ax.fill_between([theta[i], theta[i+1]], [0, 0], [0.8, 0.8], 
                               color=colors[i], alpha=0.7)
            
            # Needle position
            pos = np.pi * (0.5 + (0.4 if sentiment == 'Positive' else -0.4) * confidence)
            ax.plot([pos, pos], [0, 0.6], 'k-', linewidth=6)
            ax.plot(pos, 0.6, 'ko', markersize=10)
            
            ax.set_xlim(0, np.pi)
            ax.set_ylim(0, 1)
            ax.set_title(f'{sentiment} - Confidence: {confidence:.3f}', fontweight='bold')
            ax.set_xticks([0, np.pi/2, np.pi])
            ax.set_xticklabels(['Negative', 'Neutral', 'Positive'])
            ax.axis('off')
            
            fig.tight_layout()
            return fig
    
    @staticmethod
    @handle_errors(default_return=None)
    def create_keyword_chart(key_words: List[Tuple[str, float]], sentiment: str, theme: ThemeContext) -> Optional[plt.Figure]:
        """Create horizontal bar chart for key contributing words"""
        if not key_words:
            return None
        
        with managed_figure(figsize=config.FIGURE_SIZE_SINGLE) as fig:
            ax = fig.add_subplot(111)
            
            words = [word for word, score in key_words]
            scores = [score for word, score in key_words]
            
            # Choose color based on sentiment
            color = theme.colors['pos'] if sentiment == 'Positive' else theme.colors['neg']
            
            # Create horizontal bar chart
            bars = ax.barh(range(len(words)), scores, color=color, alpha=0.7)
            ax.set_yticks(range(len(words)))
            ax.set_yticklabels(words)
            ax.set_xlabel('Attention Weight')
            ax.set_title(f'Top Contributing Words ({sentiment})', fontweight='bold')
            
            # Add value labels on bars
            for i, (bar, score) in enumerate(zip(bars, scores)):
                ax.text(bar.get_width() + 0.001, bar.get_y() + bar.get_height()/2.,
                       f'{score:.3f}', ha='left', va='center', fontsize=9)
            
            # Invert y-axis to show highest scoring word at top
            ax.invert_yaxis()
            ax.grid(axis='x', alpha=0.3)
            fig.tight_layout()
            return fig
    
    @staticmethod
    @handle_errors(default_return=None)
    def create_wordcloud(text: str, sentiment: str, theme: ThemeContext) -> Optional[plt.Figure]:
        """Create word cloud"""
        if len(text.split()) < 3:
            return None
        
        colormap = 'Greens' if sentiment == 'Positive' else 'Reds'
        wc = WordCloud(width=800, height=400, background_color='white',
                      colormap=colormap, max_words=30).generate(text)
        
        with managed_figure(figsize=config.WORDCLOUD_SIZE) as fig:
            ax = fig.add_subplot(111)
            ax.imshow(wc, interpolation='bilinear')
            ax.axis('off')
            ax.set_title(f'{sentiment} Word Cloud', fontweight='bold')
            fig.tight_layout()
            return fig
    
    @staticmethod
    @handle_errors(default_return=None)
    def create_batch_analysis(results: List[Dict], theme: ThemeContext) -> plt.Figure:
        """Create comprehensive batch visualization"""
        with managed_figure(figsize=config.FIGURE_SIZE_BATCH) as fig:
            gs = fig.add_gridspec(2, 2, hspace=0.3, wspace=0.3)
            
            # Sentiment distribution
            ax1 = fig.add_subplot(gs[0, 0])
            sent_counts = Counter([r['sentiment'] for r in results])
            colors = [theme.colors['pos'], theme.colors['neg']]
            ax1.pie(sent_counts.values(), labels=sent_counts.keys(), 
                   autopct='%1.1f%%', colors=colors[:len(sent_counts)])
            ax1.set_title('Sentiment Distribution')
            
            # Confidence histogram
            ax2 = fig.add_subplot(gs[0, 1])
            confs = [r['confidence'] for r in results]
            ax2.hist(confs, bins=8, alpha=0.7, color='skyblue', edgecolor='black')
            ax2.set_title('Confidence Distribution')
            ax2.set_xlabel('Confidence')
            
            # Sentiment over time
            ax3 = fig.add_subplot(gs[1, :])
            pos_probs = [r['pos_prob'] for r in results]
            indices = range(len(results))
            colors_scatter = [theme.colors['pos'] if r['sentiment'] == 'Positive' 
                            else theme.colors['neg'] for r in results]
            ax3.scatter(indices, pos_probs, c=colors_scatter, alpha=0.7, s=60)
            ax3.axhline(y=0.5, color='gray', linestyle='--', alpha=0.5)
            ax3.set_title('Sentiment Progression')
            ax3.set_xlabel('Review Index')
            ax3.set_ylabel('Positive Probability')
            
            return fig

# Unified Data Handler
class DataHandler:
    """Handles all data operations"""
    
    @staticmethod
    @handle_errors(default_return=(None, "Export failed"))
    def export_data(data: List[Dict], format_type: str) -> Tuple[Optional[str], str]:
        """Universal data export"""
        if not data:
            return None, "No data to export"
        
        temp_file = tempfile.NamedTemporaryFile(mode='w', delete=False, 
                                               suffix=f'.{format_type}', encoding='utf-8')
        
        if format_type == 'csv':
            writer = csv.writer(temp_file)
            writer.writerow(['Timestamp', 'Text', 'Sentiment', 'Confidence', 'Pos_Prob', 'Neg_Prob', 'Key_Words'])
            for entry in data:
                writer.writerow([
                    entry.get('timestamp', ''),
                    entry.get('text', ''),
                    entry.get('sentiment', ''),
                    f"{entry.get('confidence', 0):.4f}",
                    f"{entry.get('pos_prob', 0):.4f}",
                    f"{entry.get('neg_prob', 0):.4f}",
                    "|".join([f"{word}:{score:.3f}" for word, score in entry.get('key_words', [])])
                ])
        elif format_type == 'json':
            json.dump(data, temp_file, indent=2, ensure_ascii=False)
        
        temp_file.close()
        return temp_file.name, f"Exported {len(data)} entries"
    

    @staticmethod
    @handle_errors(default_return="")
    def process_file(file) -> str:
        """Process uploaded file"""
        if not file:
            return ""
    
        content = file.read().decode('utf-8')
        
        if file.name.endswith('.csv'):
            import io
            csv_file = io.StringIO(content)
            reader = csv.reader(csv_file)
            try:
                next(reader)
                texts = []
                for row in reader:
                    if row and row[0].strip():
                        text = row[0].strip().strip('"')
                        if text:  
                            texts.append(text)
                return '\n'.join(texts)
            except Exception as e:
                lines = content.strip().split('\n')[1:] 
                texts = []
                for line in lines:
                    if line.strip():
                        text = line.strip().strip('"')
                        if text:
                            texts.append(text)
                return '\n'.join(texts)
        return content

# Main Application
class SentimentApp:
    """Main application orchestrator"""
    
    def __init__(self):
        self.engine = SentimentEngine()
        self.history = HistoryManager()
        self.data_handler = DataHandler()
        
        # Example data
        self.examples = [
            ["While the film's visual effects were undeniably impressive, the story lacked emotional weight, and the pacing felt inconsistent throughout."],
            ["An extraordinary achievement in filmmaking — the direction was masterful, the script was sharp, and every performance added depth and realism."],
            ["Despite a promising start, the film quickly devolved into a series of clichés, with weak character development and an ending that felt rushed and unearned."],
            ["A beautifully crafted story with heartfelt moments and a soundtrack that perfectly captured the emotional tone of each scene."],
            ["The movie was far too long, with unnecessary subplots and dull dialogue that made it difficult to stay engaged until the end."]
        ]

    
    @handle_errors(default_return=("Please enter text", None, None, None, None))
    def analyze_single(self, text: str, theme: str = 'default'):
        """Single text analysis with key words"""
        if not text.strip():
            return "Please enter text", None, None, None, None
        
        result = self.engine.analyze_single(text)
        
        # Add to history
        self.history.add({
            'text': text[:100],
            'full_text': text,
            **result
        })
        
        # Create visualizations
        theme_ctx = ThemeContext(theme)
        probs = np.array([result['neg_prob'], result['pos_prob']])
        
        prob_plot = PlotFactory.create_sentiment_bars(probs, theme_ctx)
        gauge_plot = PlotFactory.create_confidence_gauge(result['confidence'], result['sentiment'], theme_ctx)
        cloud_plot = PlotFactory.create_wordcloud(text, result['sentiment'], theme_ctx)
        keyword_plot = PlotFactory.create_keyword_chart(result['key_words'], result['sentiment'], theme_ctx)
        
        # Format result text with key words
        key_words_str = ", ".join([f"{word}({score:.3f})" for word, score in result['key_words'][:5]])
        result_text = (f"Sentiment: {result['sentiment']} (Confidence: {result['confidence']:.3f})\n"
                      f"Key Words: {key_words_str}")
        
        return result_text, prob_plot, gauge_plot, cloud_plot, keyword_plot
    
    @handle_errors(default_return=None)
    def analyze_batch(self, reviews: str, progress=None):
        """Batch analysis"""
        if not reviews.strip():
            return None
        
        texts = [r.strip() for r in reviews.split('\n') if r.strip()]
        if len(texts) < 2:
            return None
        
        results = self.engine.analyze_batch(texts, progress)
        
        # Add to history
        for result in results:
            self.history.add(result)
        
        # Create visualization
        theme_ctx = ThemeContext('default')
        return PlotFactory.create_batch_analysis(results, theme_ctx)
    
    @handle_errors(default_return=(None, "No history available"))
    def plot_history(self, theme: str = 'default'):
        """Plot analysis history"""
        history = self.history.get_all()
        if len(history) < 2:
            return None, f"Need at least 2 analyses for trends. Current: {len(history)}"
        
        theme_ctx = ThemeContext(theme)
        
        with managed_figure(figsize=(12, 8)) as fig:
            gs = fig.add_gridspec(2, 1, hspace=0.3)
            
            indices = list(range(len(history)))
            pos_probs = [item['pos_prob'] for item in history]
            confs = [item['confidence'] for item in history]
            
            # Sentiment trend
            ax1 = fig.add_subplot(gs[0, 0])
            colors = [theme_ctx.colors['pos'] if p > 0.5 else theme_ctx.colors['neg'] 
                     for p in pos_probs]
            ax1.scatter(indices, pos_probs, c=colors, alpha=0.7, s=60)
            ax1.plot(indices, pos_probs, alpha=0.5, linewidth=2)
            ax1.axhline(y=0.5, color='gray', linestyle='--', alpha=0.5)
            ax1.set_title('Sentiment History')
            ax1.set_ylabel('Positive Probability')
            ax1.grid(True, alpha=0.3)
            
            # Confidence trend
            ax2 = fig.add_subplot(gs[1, 0])
            ax2.bar(indices, confs, alpha=0.7, color='lightblue', edgecolor='navy')
            ax2.set_title('Confidence Over Time')
            ax2.set_xlabel('Analysis Number')
            ax2.set_ylabel('Confidence')
            ax2.grid(True, alpha=0.3)
            
            fig.tight_layout()
            return fig, f"History: {len(history)} analyses"

# Gradio Interface Setup
def create_interface():
    """Create streamlined Gradio interface"""
    app = SentimentApp()
    
    with gr.Blocks(theme=gr.themes.Soft(), title="Movie Sentiment Analyzer") as demo:
        gr.Markdown("# 🎬 AI Movie Sentiment Analyzer")
        gr.Markdown("Optimized sentiment analysis with advanced visualizations and key word extraction")
        
        with gr.Tab("Single Analysis"):
            with gr.Row():
                with gr.Column():
                    text_input = gr.Textbox(
                        label="Movie Review",
                        placeholder="Enter your movie review...",
                        lines=5
                    )
                    with gr.Row():
                        analyze_btn = gr.Button("Analyze", variant="primary")
                        theme_selector = gr.Dropdown(
                            choices=list(config.THEMES.keys()),
                            value="default",
                            label="Theme"
                        )
                    
                    gr.Examples(
                        examples=app.examples,
                        inputs=text_input
                    )
                
                with gr.Column():
                    result_output = gr.Textbox(label="Result", lines=3)
            
            with gr.Row():
                prob_plot = gr.Plot(label="Probabilities")
                gauge_plot = gr.Plot(label="Confidence")
            
            with gr.Row():
                wordcloud_plot = gr.Plot(label="Word Cloud")
                keyword_plot = gr.Plot(label="Key Contributing Words")
        
        with gr.Tab("Batch Analysis"):
            with gr.Row():
                with gr.Column():
                    file_upload = gr.File(label="Upload File", file_types=[".csv", ".txt"])
                    batch_input = gr.Textbox(
                        label="Reviews (one per line)",
                        lines=8
                    )
                
                with gr.Column():
                    load_btn = gr.Button("Load File")
                    batch_btn = gr.Button("Analyze Batch", variant="primary")
            
            batch_plot = gr.Plot(label="Batch Results")
        
        with gr.Tab("History & Export"):
            with gr.Row():
                refresh_btn = gr.Button("Refresh")
                clear_btn = gr.Button("Clear", variant="stop")
                status_btn = gr.Button("Status")
            
            with gr.Row():
                csv_btn = gr.Button("Export CSV")
                json_btn = gr.Button("Export JSON")
            
            history_status = gr.Textbox(label="Status")
            history_plot = gr.Plot(label="History Trends")
            csv_file = gr.File(label="CSV Download", visible=True)
            json_file = gr.File(label="JSON Download", visible=True)
        
        # Event bindings
        analyze_btn.click(
            app.analyze_single,
            inputs=[text_input, theme_selector],
            outputs=[result_output, prob_plot, gauge_plot, wordcloud_plot, keyword_plot]
        )
        
        load_btn.click(app.data_handler.process_file, inputs=file_upload, outputs=batch_input)
        batch_btn.click(app.analyze_batch, inputs=batch_input, outputs=batch_plot)
        
        refresh_btn.click(
            lambda theme: app.plot_history(theme),
            inputs=theme_selector,
            outputs=[history_plot, history_status]
        )
        
        clear_btn.click(
            lambda: f"Cleared {app.history.clear()} entries",
            outputs=history_status
        )
        
        status_btn.click(
            lambda: f"History: {app.history.size()} entries",
            outputs=history_status
        )
        
        csv_btn.click(
            lambda: app.data_handler.export_data(app.history.get_all(), 'csv'),
            outputs=[csv_file, history_status]
        )
        
        json_btn.click(
            lambda: app.data_handler.export_data(app.history.get_all(), 'json'),
            outputs=[json_file, history_status]
        )
    
    return demo

# Application Entry Point
if __name__ == "__main__":
    logging.basicConfig(level=logging.INFO)
    demo = create_interface()
    demo.launch(share=True)