Update app.py
Browse files
app.py
CHANGED
@@ -1,6 +1,6 @@
|
|
1 |
import torch
|
2 |
import gradio as gr
|
3 |
-
from transformers import AutoTokenizer, AutoModelForSequenceClassification
|
4 |
import plotly.graph_objects as go
|
5 |
import plotly.express as px
|
6 |
from plotly.subplots import make_subplots
|
@@ -14,936 +14,1455 @@ import io
|
|
14 |
import tempfile
|
15 |
from datetime import datetime
|
16 |
import logging
|
17 |
-
from functools import lru_cache
|
18 |
from dataclasses import dataclass
|
19 |
-
from typing import List, Dict, Optional, Tuple
|
20 |
-
|
21 |
-
import
|
22 |
-
import
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
23 |
|
24 |
# Configuration
|
25 |
@dataclass
|
26 |
class Config:
|
27 |
-
MAX_HISTORY_SIZE: int =
|
28 |
-
BATCH_SIZE_LIMIT: int =
|
29 |
MAX_TEXT_LENGTH: int = 512
|
30 |
-
|
31 |
-
CACHE_SIZE: int = 128
|
32 |
-
BATCH_PROCESSING_SIZE: int = 8
|
33 |
-
|
34 |
-
# Visualization settings
|
35 |
-
FIGURE_WIDTH: int = 800
|
36 |
-
FIGURE_HEIGHT: int = 500
|
37 |
-
WORDCLOUD_SIZE: Tuple[int, int] = (800, 400)
|
38 |
|
39 |
-
|
40 |
-
|
41 |
-
'
|
42 |
-
'
|
43 |
-
'
|
|
|
|
|
|
|
|
|
44 |
}
|
45 |
|
46 |
-
# Multi-language models
|
47 |
MODELS = {
|
48 |
-
'
|
49 |
-
|
50 |
-
|
51 |
-
},
|
52 |
-
'english': {
|
53 |
-
'name': 'cardiffnlp/twitter-roberta-base-sentiment-latest',
|
54 |
-
'labels': ['NEGATIVE', 'NEUTRAL', 'POSITIVE']
|
55 |
-
},
|
56 |
-
'chinese': {
|
57 |
-
'name': 'uer/roberta-base-finetuned-chinanews-chinese',
|
58 |
-
'labels': ['NEGATIVE', 'POSITIVE']
|
59 |
-
},
|
60 |
-
'spanish': {
|
61 |
-
'name': 'finiteautomata/beto-sentiment-analysis',
|
62 |
-
'labels': ['NEGATIVE', 'NEUTRAL', 'POSITIVE']
|
63 |
-
},
|
64 |
-
'french': {
|
65 |
-
'name': 'tblard/tf-allocine',
|
66 |
-
'labels': ['NEGATIVE', 'POSITIVE']
|
67 |
-
}
|
68 |
}
|
69 |
|
70 |
-
|
71 |
-
|
72 |
-
'
|
73 |
-
'
|
74 |
-
'
|
|
|
75 |
}
|
76 |
|
77 |
config = Config()
|
|
|
|
|
|
|
78 |
logger = logging.getLogger(__name__)
|
79 |
|
80 |
-
#
|
81 |
-
|
82 |
-
|
83 |
-
|
84 |
-
|
85 |
-
|
86 |
-
|
87 |
-
return func(*args, **kwargs)
|
88 |
-
except Exception as e:
|
89 |
-
logger.error(f"{func.__name__} failed: {e}")
|
90 |
-
return default_return if default_return is not None else f"Error: {str(e)}"
|
91 |
-
return wrapper
|
92 |
-
return decorator
|
93 |
-
|
94 |
-
class ThemeContext:
|
95 |
-
"""Theme management context"""
|
96 |
-
def __init__(self, theme: str = 'default'):
|
97 |
-
self.theme = theme
|
98 |
-
self.colors = config.THEMES.get(theme, config.THEMES['default'])
|
99 |
-
|
100 |
-
# Enhanced Model Manager for Multi-language Support
|
101 |
-
class ModelManager:
|
102 |
-
"""Multi-language model manager with lazy loading"""
|
103 |
-
_instance = None
|
104 |
-
_models = {}
|
105 |
-
_tokenizers = {}
|
106 |
-
_pipelines = {}
|
107 |
-
_device = None
|
108 |
-
|
109 |
-
def __new__(cls):
|
110 |
-
if cls._instance is None:
|
111 |
-
cls._instance = super().__new__(cls)
|
112 |
-
return cls._instance
|
113 |
-
|
114 |
-
@property
|
115 |
-
def device(self):
|
116 |
-
if self._device is None:
|
117 |
-
self._device = torch.device("cuda" if torch.cuda.is_available() else "cpu")
|
118 |
-
return self._device
|
119 |
-
|
120 |
-
def get_pipeline(self, model_key: str = 'multilingual'):
|
121 |
-
"""Get or create sentiment analysis pipeline for specified model"""
|
122 |
-
if model_key not in self._pipelines:
|
123 |
-
try:
|
124 |
-
model_config = config.MODELS[model_key]
|
125 |
-
self._pipelines[model_key] = pipeline(
|
126 |
-
"sentiment-analysis",
|
127 |
-
model=model_config['name'],
|
128 |
-
tokenizer=model_config['name'],
|
129 |
-
device=0 if torch.cuda.is_available() else -1,
|
130 |
-
top_k=None
|
131 |
-
)
|
132 |
-
logger.info(f"Model {model_key} loaded successfully")
|
133 |
-
except Exception as e:
|
134 |
-
logger.error(f"Failed to load model {model_key}: {e}")
|
135 |
-
# Fallback to multilingual model
|
136 |
-
if model_key != 'multilingual':
|
137 |
-
return self.get_pipeline('multilingual')
|
138 |
-
raise
|
139 |
-
return self._pipelines[model_key]
|
140 |
-
|
141 |
-
def get_model_and_tokenizer(self, model_key: str = 'multilingual'):
|
142 |
-
"""Get model and tokenizer for attention extraction"""
|
143 |
-
if model_key not in self._models:
|
144 |
-
try:
|
145 |
-
model_config = config.MODELS[model_key]
|
146 |
-
self._tokenizers[model_key] = AutoTokenizer.from_pretrained(model_config['name'])
|
147 |
-
self._models[model_key] = AutoModelForSequenceClassification.from_pretrained(model_config['name'])
|
148 |
-
self._models[model_key].to(self.device)
|
149 |
-
logger.info(f"Model and tokenizer {model_key} loaded for attention extraction")
|
150 |
-
except Exception as e:
|
151 |
-
logger.error(f"Failed to load model/tokenizer {model_key}: {e}")
|
152 |
-
if model_key != 'multilingual':
|
153 |
-
return self.get_model_and_tokenizer('multilingual')
|
154 |
-
raise
|
155 |
-
return self._models[model_key], self._tokenizers[model_key]
|
156 |
|
157 |
-
|
158 |
-
|
159 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
160 |
|
161 |
@staticmethod
|
162 |
def detect_language(text: str) -> str:
|
163 |
-
"""Detect language
|
164 |
-
|
165 |
-
|
166 |
-
|
167 |
-
|
168 |
-
|
169 |
-
|
170 |
-
|
171 |
-
|
172 |
-
|
173 |
-
|
174 |
-
|
175 |
-
return '
|
176 |
|
177 |
-
|
178 |
-
class TextProcessor:
|
179 |
-
"""Optimized text processing with multi-language support"""
|
180 |
-
@staticmethod
|
181 |
-
@lru_cache(maxsize=config.CACHE_SIZE)
|
182 |
-
def clean_text(text: str, language: str = 'en') -> Tuple[str, ...]:
|
183 |
-
"""Single-pass text cleaning with language-specific stop words"""
|
184 |
-
words = re.findall(r'\b\w{2,}\b', text.lower())
|
185 |
-
stop_words = config.STOP_WORDS.get(language, config.STOP_WORDS['en'])
|
186 |
-
return tuple(w for w in words if w not in stop_words and len(w) >= config.MIN_WORD_LENGTH)
|
187 |
|
188 |
class HistoryManager:
|
189 |
-
"""
|
190 |
def __init__(self):
|
191 |
self._history = []
|
192 |
|
193 |
-
def
|
194 |
-
self._history.append(
|
195 |
if len(self._history) > config.MAX_HISTORY_SIZE:
|
196 |
self._history = self._history[-config.MAX_HISTORY_SIZE:]
|
197 |
|
198 |
-
def
|
|
|
|
|
|
|
|
|
|
|
199 |
return self._history.copy()
|
200 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
201 |
def clear(self) -> int:
|
202 |
count = len(self._history)
|
203 |
self._history.clear()
|
204 |
return count
|
205 |
|
206 |
-
def
|
207 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
208 |
|
209 |
-
|
210 |
-
|
211 |
-
|
212 |
-
|
213 |
-
self.model_manager = ModelManager()
|
214 |
-
self.language_detector = LanguageDetector()
|
215 |
|
216 |
-
|
217 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
218 |
try:
|
219 |
-
|
220 |
-
|
221 |
-
|
222 |
-
text, return_tensors="pt", padding=True,
|
223 |
-
truncation=True, max_length=config.MAX_TEXT_LENGTH
|
224 |
-
).to(self.model_manager.device)
|
225 |
|
226 |
-
# Get model outputs with attention weights
|
227 |
with torch.no_grad():
|
228 |
-
outputs = model(**inputs
|
229 |
-
|
230 |
|
231 |
-
|
232 |
-
|
233 |
-
|
|
|
|
|
|
|
234 |
|
235 |
-
|
236 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
237 |
|
238 |
-
|
239 |
-
|
240 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
241 |
|
242 |
-
|
243 |
-
|
244 |
-
|
245 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
246 |
|
247 |
-
|
248 |
-
|
249 |
-
|
250 |
-
|
251 |
-
|
252 |
-
|
253 |
-
|
254 |
-
|
255 |
-
|
256 |
-
|
257 |
-
|
258 |
-
|
259 |
-
|
260 |
-
|
261 |
-
|
262 |
|
263 |
-
|
264 |
-
|
265 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
266 |
|
267 |
-
#
|
268 |
-
|
269 |
-
|
|
|
270 |
|
271 |
-
|
272 |
-
|
273 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
274 |
}
|
275 |
|
276 |
-
|
277 |
-
|
278 |
-
return
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
279 |
|
280 |
except Exception as e:
|
281 |
-
logger.error(f"
|
282 |
-
return
|
|
|
|
|
|
|
283 |
|
284 |
-
@
|
285 |
-
def
|
286 |
-
"""
|
287 |
-
if
|
288 |
-
|
|
|
|
|
|
|
289 |
|
290 |
-
|
291 |
-
if
|
292 |
-
detected_lang = self.language_detector.detect_language(text)
|
293 |
-
model_key = detected_lang if detected_lang in config.MODELS else 'multilingual'
|
294 |
|
295 |
-
|
296 |
-
|
297 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
298 |
|
299 |
-
|
300 |
-
|
301 |
-
|
|
|
|
|
|
|
|
|
302 |
|
303 |
-
|
304 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
305 |
|
306 |
-
|
307 |
-
|
308 |
-
|
309 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
310 |
|
311 |
-
|
312 |
-
|
313 |
-
|
314 |
-
|
315 |
-
|
316 |
-
|
317 |
-
elif 'NEGATIVE' in label:
|
318 |
-
neg_score = score
|
319 |
-
elif 'NEUTRAL' in label:
|
320 |
-
neutral_score = score
|
321 |
-
|
322 |
-
# Determine final sentiment
|
323 |
-
if pos_score > neg_score and pos_score > neutral_score:
|
324 |
-
sentiment = 'Positive'
|
325 |
-
confidence = pos_score
|
326 |
-
elif neg_score > pos_score and neg_score > neutral_score:
|
327 |
-
sentiment = 'Negative'
|
328 |
-
confidence = neg_score
|
329 |
else:
|
330 |
-
|
331 |
-
confidence = neutral_score
|
332 |
|
333 |
-
#
|
334 |
-
|
|
|
|
|
|
|
|
|
335 |
|
336 |
-
|
337 |
-
|
338 |
-
|
339 |
-
|
340 |
-
|
341 |
-
|
342 |
-
|
343 |
-
|
344 |
-
|
345 |
-
|
346 |
-
|
347 |
-
def analyze_batch(self, texts: List[str], model_key: str = None, progress_callback=None) -> List[Dict]:
|
348 |
-
"""Optimized batch processing with key words"""
|
349 |
-
if len(texts) > config.BATCH_SIZE_LIMIT:
|
350 |
-
texts = texts[:config.BATCH_SIZE_LIMIT]
|
351 |
|
352 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
353 |
|
354 |
-
|
355 |
-
|
356 |
-
|
357 |
-
|
358 |
-
|
359 |
-
|
360 |
-
|
361 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
362 |
|
363 |
-
|
364 |
-
|
365 |
-
# Plotly Visualization System
|
366 |
-
class PlotFactory:
|
367 |
-
"""Factory for creating Plotly visualizations"""
|
368 |
|
369 |
@staticmethod
|
370 |
-
|
371 |
-
|
372 |
-
|
373 |
-
|
374 |
-
|
375 |
-
|
376 |
-
|
377 |
-
|
378 |
-
|
379 |
-
|
380 |
-
|
381 |
-
|
382 |
-
if 'neutral_prob' in result and result['neutral_prob'] > 0:
|
383 |
-
labels.append("Neutral")
|
384 |
-
values.append(result['neutral_prob'])
|
385 |
-
colors.append('#FFA500') # Orange for neutral
|
386 |
-
|
387 |
-
if 'pos_prob' in result and result['pos_prob'] > 0:
|
388 |
-
labels.append("Positive")
|
389 |
-
values.append(result['pos_prob'])
|
390 |
-
colors.append(theme.colors['pos'])
|
391 |
|
392 |
fig = go.Figure(data=[
|
393 |
-
go.Bar(
|
394 |
-
x=labels,
|
395 |
-
y=values,
|
396 |
-
marker_color=colors,
|
397 |
-
text=[f'{v:.3f}' for v in values],
|
398 |
-
textposition='auto',
|
399 |
-
)
|
400 |
])
|
401 |
|
|
|
402 |
fig.update_layout(
|
403 |
title="Sentiment Probabilities",
|
404 |
-
xaxis_title="Sentiment",
|
405 |
yaxis_title="Probability",
|
406 |
-
|
407 |
-
width=config.FIGURE_WIDTH,
|
408 |
-
height=config.FIGURE_HEIGHT,
|
409 |
showlegend=False
|
410 |
)
|
411 |
|
412 |
return fig
|
413 |
-
|
414 |
@staticmethod
|
415 |
-
|
416 |
-
|
417 |
-
|
418 |
-
|
419 |
-
|
420 |
-
|
421 |
-
|
422 |
-
|
423 |
-
|
424 |
-
|
425 |
-
|
426 |
-
|
427 |
-
|
428 |
-
|
429 |
-
|
430 |
-
|
431 |
-
{'range': [0.5, 1], 'color': "gray"}
|
432 |
-
],
|
433 |
-
'threshold': {
|
434 |
-
'line': {'color': "red", 'width': 4},
|
435 |
-
'thickness': 0.75,
|
436 |
-
'value': 0.9
|
437 |
-
}
|
438 |
-
}
|
439 |
-
))
|
440 |
|
441 |
fig.update_layout(
|
442 |
-
|
443 |
-
height=
|
444 |
)
|
445 |
|
446 |
return fig
|
447 |
-
|
448 |
@staticmethod
|
449 |
-
|
450 |
-
|
451 |
-
|
452 |
-
|
453 |
-
|
454 |
-
|
455 |
-
|
456 |
-
|
457 |
-
|
458 |
-
|
459 |
-
|
460 |
-
|
461 |
-
|
462 |
-
x=scores,
|
463 |
-
y=words,
|
464 |
-
orientation='h',
|
465 |
-
marker_color=color,
|
466 |
-
text=[f'{score:.3f}' for score in scores],
|
467 |
-
textposition='auto',
|
468 |
-
))
|
469 |
|
470 |
fig.update_layout(
|
471 |
-
title=
|
472 |
-
xaxis_title=
|
473 |
-
yaxis_title=
|
474 |
-
|
475 |
-
height=config.FIGURE_HEIGHT,
|
476 |
-
yaxis={'categoryorder': 'total ascending'}
|
477 |
)
|
478 |
|
479 |
return fig
|
480 |
|
481 |
@staticmethod
|
482 |
-
|
483 |
-
|
484 |
-
|
485 |
-
|
486 |
-
return None
|
487 |
|
488 |
-
|
489 |
-
colormap = 'Greens' if sentiment == 'Positive' else 'Reds' if sentiment == 'Negative' else 'Blues'
|
490 |
-
wc = WordCloud(
|
491 |
-
width=config.WORDCLOUD_SIZE[0],
|
492 |
-
height=config.WORDCLOUD_SIZE[1],
|
493 |
-
background_color='white',
|
494 |
-
colormap=colormap,
|
495 |
-
max_words=30
|
496 |
-
).generate(text)
|
497 |
-
|
498 |
-
# Convert to image
|
499 |
-
img_array = wc.to_array()
|
500 |
-
|
501 |
-
fig = go.Figure()
|
502 |
-
fig.add_trace(go.Image(z=img_array))
|
503 |
-
fig.update_layout(
|
504 |
-
title=f'{sentiment} Word Cloud',
|
505 |
-
xaxis={'visible': False},
|
506 |
-
yaxis={'visible': False},
|
507 |
-
width=config.FIGURE_WIDTH,
|
508 |
-
height=config.FIGURE_HEIGHT,
|
509 |
-
margin=dict(l=0, r=0, t=30, b=0)
|
510 |
-
)
|
511 |
-
|
512 |
-
return fig
|
513 |
-
|
514 |
-
except Exception as e:
|
515 |
-
logger.error(f"Word cloud generation failed: {e}")
|
516 |
-
return None
|
517 |
-
|
518 |
-
@staticmethod
|
519 |
-
@handle_errors(default_return=None)
|
520 |
-
def create_batch_analysis(results: List[Dict], theme: ThemeContext) -> go.Figure:
|
521 |
-
"""Create comprehensive batch visualization using Plotly subplots"""
|
522 |
fig = make_subplots(
|
523 |
rows=2, cols=2,
|
524 |
-
subplot_titles=['Sentiment
|
525 |
-
'
|
526 |
-
specs=[[{"
|
527 |
-
[{"type": "
|
528 |
)
|
529 |
|
530 |
-
#
|
531 |
-
|
532 |
-
|
|
|
|
|
|
|
533 |
|
|
|
|
|
534 |
fig.add_trace(
|
535 |
-
go.
|
536 |
-
|
|
|
537 |
row=1, col=1
|
538 |
)
|
539 |
|
540 |
-
# Confidence
|
541 |
-
confs = [r['confidence'] for r in results]
|
542 |
fig.add_trace(
|
543 |
-
go.Histogram(x=
|
544 |
row=1, col=2
|
545 |
)
|
546 |
|
547 |
-
#
|
548 |
-
|
549 |
-
indices = list(range(len(results)))
|
550 |
-
colors_scatter = [theme.colors['pos'] if r['sentiment'] == 'Positive'
|
551 |
-
else theme.colors['neg'] if r['sentiment'] == 'Negative'
|
552 |
-
else '#FFA500' for r in results]
|
553 |
-
|
554 |
fig.add_trace(
|
555 |
-
go.
|
556 |
-
|
557 |
-
name="Sentiment Progression"),
|
558 |
row=2, col=1
|
559 |
)
|
560 |
|
561 |
-
#
|
562 |
-
|
563 |
-
|
564 |
-
|
565 |
-
|
566 |
-
|
567 |
-
showlegend=False,
|
568 |
-
title_text="Batch Analysis Results"
|
569 |
)
|
570 |
|
|
|
571 |
return fig
|
572 |
|
573 |
-
#
|
574 |
-
|
575 |
-
|
576 |
-
|
577 |
-
|
578 |
-
@handle_errors(default_return=(None, "Export failed"))
|
579 |
-
def export_data(data: List[Dict], format_type: str) -> Tuple[Optional[str], str]:
|
580 |
-
"""Universal data export"""
|
581 |
-
if not data:
|
582 |
-
return None, "No data to export"
|
583 |
-
|
584 |
-
temp_file = tempfile.NamedTemporaryFile(mode='w', delete=False,
|
585 |
-
suffix=f'.{format_type}', encoding='utf-8')
|
586 |
-
|
587 |
-
if format_type == 'csv':
|
588 |
-
writer = csv.writer(temp_file)
|
589 |
-
writer.writerow(['Timestamp', 'Text', 'Sentiment', 'Confidence', 'Pos_Prob', 'Neg_Prob', 'Neutral_Prob', 'Language', 'Key_Words'])
|
590 |
-
for entry in data:
|
591 |
-
writer.writerow([
|
592 |
-
entry.get('timestamp', ''),
|
593 |
-
entry.get('text', ''),
|
594 |
-
entry.get('sentiment', ''),
|
595 |
-
f"{entry.get('confidence', 0):.4f}",
|
596 |
-
f"{entry.get('pos_prob', 0):.4f}",
|
597 |
-
f"{entry.get('neg_prob', 0):.4f}",
|
598 |
-
f"{entry.get('neutral_prob', 0):.4f}",
|
599 |
-
entry.get('language', ''),
|
600 |
-
"|".join([f"{word}:{score:.3f}" for word, score in entry.get('key_words', [])])
|
601 |
-
])
|
602 |
-
elif format_type == 'json':
|
603 |
-
json.dump(data, temp_file, indent=2, ensure_ascii=False)
|
604 |
-
|
605 |
-
temp_file.close()
|
606 |
-
return temp_file.name, f"Exported {len(data)} entries"
|
607 |
-
|
608 |
-
@staticmethod
|
609 |
-
@handle_errors(default_return="")
|
610 |
-
def process_file(file) -> str:
|
611 |
-
"""Process uploaded file"""
|
612 |
-
if not file:
|
613 |
-
return ""
|
614 |
-
|
615 |
-
content = file.read().decode('utf-8')
|
616 |
-
|
617 |
-
if file.name.endswith('.csv'):
|
618 |
-
import io
|
619 |
-
csv_file = io.StringIO(content)
|
620 |
-
reader = csv.reader(csv_file)
|
621 |
-
try:
|
622 |
-
next(reader)
|
623 |
-
texts = []
|
624 |
-
for row in reader:
|
625 |
-
if row and row[0].strip():
|
626 |
-
text = row[0].strip().strip('"')
|
627 |
-
if text:
|
628 |
-
texts.append(text)
|
629 |
-
return '\n'.join(texts)
|
630 |
-
except Exception as e:
|
631 |
-
lines = content.strip().split('\n')[1:]
|
632 |
-
texts = []
|
633 |
-
for line in lines:
|
634 |
-
if line.strip():
|
635 |
-
text = line.strip().strip('"')
|
636 |
-
if text:
|
637 |
-
texts.append(text)
|
638 |
-
return '\n'.join(texts)
|
639 |
-
return content
|
640 |
-
|
641 |
-
# Main Application with Multi-language Support
|
642 |
-
class SentimentApp:
|
643 |
-
"""Main application orchestrator with multi-language support"""
|
644 |
-
|
645 |
-
def __init__(self):
|
646 |
-
self.engine = SentimentEngine()
|
647 |
-
self.history = HistoryManager()
|
648 |
-
self.data_handler = DataHandler()
|
649 |
-
|
650 |
-
# Multi-language examples
|
651 |
-
self.examples = [
|
652 |
-
["While the film's visual effects were undeniably impressive, the story lacked emotional weight, and the pacing felt inconsistent throughout."],
|
653 |
-
["这部电影的视觉效果令人印象深刻,但故事缺乏情感深度,节奏感也不够连贯。"],
|
654 |
-
["Aunque los efectos visuales de la película fueron innegablemente impresionantes, la historia carecía de peso emocional."],
|
655 |
-
["Bien que les effets visuels du film soient indéniablement impressionnants, l'histoire manquait de poids émotionnel."],
|
656 |
-
["An extraordinary achievement in filmmaking — the direction was masterful, the script was sharp, and every performance added depth and realism."]
|
657 |
-
]
|
658 |
-
|
659 |
-
@handle_errors(default_return=("Please enter text", None, None, None, None))
|
660 |
-
def analyze_single(self, text: str, model_key: str = 'multilingual', theme: str = 'default'):
|
661 |
-
"""Single text analysis with multi-language support"""
|
662 |
if not text.strip():
|
663 |
-
return "Please enter text", None, None
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
664 |
|
665 |
-
result =
|
666 |
|
667 |
# Add to history
|
668 |
-
|
669 |
-
'text': text[:100],
|
670 |
'full_text': text,
|
671 |
-
|
672 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
673 |
|
674 |
# Create visualizations
|
675 |
-
|
676 |
-
|
677 |
-
|
678 |
-
|
679 |
-
|
680 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
681 |
|
682 |
-
#
|
683 |
-
|
684 |
-
result_text = (f"Sentiment: {result['sentiment']} (Confidence: {result['confidence']:.3f})\n"
|
685 |
-
f"Language: {result['language']}\n"
|
686 |
-
f"Key Words: {key_words_str}")
|
687 |
|
688 |
-
|
689 |
-
|
690 |
-
|
691 |
-
|
692 |
-
|
693 |
-
|
694 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
695 |
|
696 |
-
|
697 |
-
|
698 |
-
|
|
|
|
|
699 |
|
700 |
-
|
|
|
701 |
|
702 |
# Add to history
|
703 |
-
|
704 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
705 |
|
706 |
-
|
707 |
-
theme_ctx = ThemeContext('default')
|
708 |
-
return PlotFactory.create_batch_analysis(results, theme_ctx)
|
709 |
-
|
710 |
-
@handle_errors(default_return=(None, "No history available"))
|
711 |
-
def plot_history(self, theme: str = 'default'):
|
712 |
-
"""Plot analysis history using Plotly"""
|
713 |
-
history = self.history.get_all()
|
714 |
-
if len(history) < 2:
|
715 |
-
return None, f"Need at least 2 analyses for trends. Current: {len(history)}"
|
716 |
|
717 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
718 |
|
719 |
-
|
720 |
-
fig = make_subplots(
|
721 |
-
rows=2, cols=1,
|
722 |
-
subplot_titles=['Sentiment History', 'Confidence Over Time'],
|
723 |
-
vertical_spacing=0.12
|
724 |
-
)
|
725 |
|
726 |
-
|
727 |
-
|
728 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
729 |
|
730 |
-
#
|
731 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
732 |
|
733 |
-
|
734 |
-
|
735 |
-
x=indices,
|
736 |
-
y=pos_probs,
|
737 |
-
mode='markers+lines',
|
738 |
-
marker=dict(color=colors, size=8),
|
739 |
-
line=dict(color='gray', width=2),
|
740 |
-
name='Sentiment Trend'
|
741 |
-
),
|
742 |
-
row=1, col=1
|
743 |
-
)
|
744 |
|
745 |
-
#
|
746 |
-
|
|
|
747 |
|
748 |
-
#
|
749 |
-
|
750 |
-
|
751 |
-
|
752 |
-
|
753 |
-
marker_color='lightblue',
|
754 |
-
marker_line_color='navy',
|
755 |
-
marker_line_width=1,
|
756 |
-
name='Confidence'
|
757 |
-
),
|
758 |
-
row=2, col=1
|
759 |
-
)
|
760 |
|
761 |
-
|
762 |
-
|
763 |
-
|
764 |
-
|
765 |
-
|
766 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
767 |
|
768 |
-
|
769 |
-
fig.update_yaxes(title_text="Positive Probability", row=1, col=1)
|
770 |
-
fig.update_yaxes(title_text="Confidence", row=2, col=1)
|
771 |
|
772 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
773 |
|
774 |
-
|
775 |
-
|
776 |
-
|
777 |
-
|
|
|
778 |
|
779 |
-
|
780 |
-
|
781 |
-
|
782 |
-
|
783 |
-
|
784 |
-
|
785 |
-
|
786 |
-
|
787 |
-
|
788 |
-
|
789 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
790 |
)
|
791 |
-
|
792 |
-
|
793 |
-
|
794 |
-
|
795 |
-
('Auto-detect', 'multilingual'),
|
796 |
-
('Multilingual', 'multilingual'),
|
797 |
-
('English', 'english'),
|
798 |
-
('Chinese 中文', 'chinese'),
|
799 |
-
('Spanish Español', 'spanish'),
|
800 |
-
('French Français', 'french')
|
801 |
-
],
|
802 |
-
value="multilingual",
|
803 |
-
label="Language Model"
|
804 |
-
)
|
805 |
-
theme_selector = gr.Dropdown(
|
806 |
-
choices=list(config.THEMES.keys()),
|
807 |
-
value="default",
|
808 |
-
label="Theme"
|
809 |
-
)
|
810 |
-
|
811 |
-
gr.Examples(
|
812 |
-
examples=app.examples,
|
813 |
-
inputs=text_input,
|
814 |
-
label="Multi-language Examples"
|
815 |
)
|
816 |
|
817 |
-
with gr.
|
818 |
-
|
819 |
-
|
820 |
-
|
821 |
-
|
822 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
823 |
|
824 |
-
with gr.
|
825 |
-
|
826 |
-
|
827 |
-
|
828 |
-
|
829 |
-
|
830 |
-
|
831 |
-
|
832 |
-
|
833 |
-
|
834 |
-
|
835 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
836 |
)
|
837 |
|
838 |
-
|
839 |
-
|
840 |
-
|
841 |
-
|
842 |
-
|
843 |
-
|
844 |
-
|
845 |
-
|
846 |
-
|
847 |
-
|
848 |
-
|
849 |
-
|
850 |
-
|
851 |
-
|
852 |
-
label="Batch Model"
|
853 |
-
)
|
854 |
|
855 |
-
|
|
|
856 |
|
857 |
-
with gr.
|
858 |
-
|
859 |
-
|
860 |
-
|
861 |
-
|
862 |
-
|
863 |
-
|
864 |
-
|
865 |
-
|
866 |
-
|
867 |
-
|
868 |
-
|
869 |
-
|
870 |
-
|
871 |
-
|
872 |
-
|
873 |
-
|
874 |
-
|
875 |
-
|
876 |
-
|
877 |
-
|
878 |
-
|
879 |
-
|
880 |
-
|
881 |
-
|
882 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
883 |
|
884 |
-
|
885 |
-
|
886 |
-
- **Attention-based Keywords**: Extract words that contribute most to sentiment prediction
|
887 |
-
- **Interactive Visualizations**: Plotly-powered charts and graphs
|
888 |
-
- **Batch Processing**: Analyze multiple texts at once
|
889 |
-
- **Export Capabilities**: Save results in CSV or JSON format
|
890 |
-
- **Multi-language Support**: Mix different languages in batch analysis
|
891 |
-
""")
|
892 |
-
|
893 |
-
# Event bindings
|
894 |
-
analyze_btn.click(
|
895 |
-
app.analyze_single,
|
896 |
-
inputs=[text_input, model_selector, theme_selector],
|
897 |
-
outputs=[result_output, prob_plot, gauge_plot, wordcloud_plot, keyword_plot]
|
898 |
-
)
|
899 |
|
900 |
-
|
901 |
-
|
902 |
-
|
903 |
-
|
904 |
-
|
905 |
|
906 |
-
|
907 |
-
|
908 |
-
|
909 |
-
|
910 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
911 |
|
912 |
-
|
913 |
-
|
914 |
-
|
915 |
-
outputs=[history_plot, history_status]
|
916 |
-
)
|
917 |
|
918 |
-
|
919 |
-
|
920 |
-
|
921 |
-
)
|
922 |
|
923 |
-
|
924 |
-
lambda: f"History: {app.history.size()} entries | Available Models: {', '.join(config.MODELS.keys())}",
|
925 |
-
outputs=history_status
|
926 |
-
)
|
927 |
|
928 |
-
|
929 |
-
|
930 |
-
|
931 |
-
)
|
932 |
|
933 |
-
|
934 |
-
|
935 |
-
|
936 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
937 |
|
938 |
-
|
|
|
|
|
|
|
939 |
|
940 |
-
# Application Entry Point
|
941 |
if __name__ == "__main__":
|
942 |
-
|
943 |
-
demo = create_interface()
|
944 |
-
demo.launch(
|
945 |
-
share=True,
|
946 |
-
server_name="0.0.0.0",
|
947 |
-
server_port=7860,
|
948 |
-
show_error=True
|
949 |
-
)
|
|
|
1 |
import torch
|
2 |
import gradio as gr
|
3 |
+
from transformers import AutoTokenizer, AutoModelForSequenceClassification
|
4 |
import plotly.graph_objects as go
|
5 |
import plotly.express as px
|
6 |
from plotly.subplots import make_subplots
|
|
|
14 |
import tempfile
|
15 |
from datetime import datetime
|
16 |
import logging
|
17 |
+
from functools import lru_cache
|
18 |
from dataclasses import dataclass
|
19 |
+
from typing import List, Dict, Optional, Tuple
|
20 |
+
import nltk
|
21 |
+
from nltk.corpus import stopwords
|
22 |
+
import langdetect
|
23 |
+
import pandas as pd
|
24 |
+
|
25 |
+
# Try to import SHAP and LIME, fall back to basic analysis if not available
|
26 |
+
try:
|
27 |
+
import shap
|
28 |
+
SHAP_AVAILABLE = True
|
29 |
+
except ImportError:
|
30 |
+
SHAP_AVAILABLE = False
|
31 |
+
logger.warning("SHAP not available, using basic analysis")
|
32 |
+
|
33 |
+
try:
|
34 |
+
from lime.lime_text import LimeTextExplainer
|
35 |
+
LIME_AVAILABLE = True
|
36 |
+
except ImportError:
|
37 |
+
LIME_AVAILABLE = False
|
38 |
+
logger.warning("LIME not available, using basic analysis")
|
39 |
|
40 |
# Configuration
|
41 |
@dataclass
|
42 |
class Config:
|
43 |
+
MAX_HISTORY_SIZE: int = 500
|
44 |
+
BATCH_SIZE_LIMIT: int = 30
|
45 |
MAX_TEXT_LENGTH: int = 512
|
46 |
+
CACHE_SIZE: int = 64
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
47 |
|
48 |
+
# Supported languages and models
|
49 |
+
SUPPORTED_LANGUAGES = {
|
50 |
+
'auto': 'Auto Detect',
|
51 |
+
'en': 'English',
|
52 |
+
'zh': 'Chinese',
|
53 |
+
'es': 'Spanish',
|
54 |
+
'fr': 'French',
|
55 |
+
'de': 'German',
|
56 |
+
'sv': 'Swedish'
|
57 |
}
|
58 |
|
|
|
59 |
MODELS = {
|
60 |
+
'en': "cardiffnlp/twitter-roberta-base-sentiment-latest",
|
61 |
+
'multilingual': "cardiffnlp/twitter-xlm-roberta-base-sentiment",
|
62 |
+
'zh': "uer/roberta-base-finetuned-dianping-chinese"
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
63 |
}
|
64 |
|
65 |
+
# Color themes
|
66 |
+
THEMES = {
|
67 |
+
'default': {'pos': '#4CAF50', 'neg': '#F44336', 'neu': '#FF9800'},
|
68 |
+
'ocean': {'pos': '#0077BE', 'neg': '#FF6B35', 'neu': '#00BCD4'},
|
69 |
+
'dark': {'pos': '#66BB6A', 'neg': '#EF5350', 'neu': '#FFA726'},
|
70 |
+
'rainbow': {'pos': '#9C27B0', 'neg': '#E91E63', 'neu': '#FF5722'}
|
71 |
}
|
72 |
|
73 |
config = Config()
|
74 |
+
|
75 |
+
# Logging setup
|
76 |
+
logging.basicConfig(level=logging.INFO)
|
77 |
logger = logging.getLogger(__name__)
|
78 |
|
79 |
+
# Initialize NLTK
|
80 |
+
try:
|
81 |
+
nltk.download('stopwords', quiet=True)
|
82 |
+
nltk.download('punkt', quiet=True)
|
83 |
+
STOP_WORDS = set(stopwords.words('english'))
|
84 |
+
except:
|
85 |
+
STOP_WORDS = {'the', 'a', 'an', 'and', 'or', 'but', 'in', 'on', 'at', 'to', 'for', 'of', 'with', 'by'}
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
86 |
|
87 |
+
class ModelManager:
|
88 |
+
"""Manages multiple language models"""
|
89 |
+
def __init__(self):
|
90 |
+
self.models = {}
|
91 |
+
self.tokenizers = {}
|
92 |
+
self.device = torch.device("cuda" if torch.cuda.is_available() else "cpu")
|
93 |
+
self._load_default_model()
|
94 |
+
|
95 |
+
def _load_default_model(self):
|
96 |
+
"""Load the default models"""
|
97 |
+
try:
|
98 |
+
# Load multilingual model as default
|
99 |
+
model_name = config.MODELS['multilingual']
|
100 |
+
self.tokenizers['default'] = AutoTokenizer.from_pretrained(model_name)
|
101 |
+
self.models['default'] = AutoModelForSequenceClassification.from_pretrained(model_name)
|
102 |
+
self.models['default'].to(self.device)
|
103 |
+
logger.info(f"Default model loaded: {model_name}")
|
104 |
+
|
105 |
+
# Load Chinese model
|
106 |
+
zh_model_name = config.MODELS['zh']
|
107 |
+
self.tokenizers['zh'] = AutoTokenizer.from_pretrained(zh_model_name)
|
108 |
+
self.models['zh'] = AutoModelForSequenceClassification.from_pretrained(zh_model_name)
|
109 |
+
self.models['zh'].to(self.device)
|
110 |
+
logger.info(f"Chinese model loaded: {zh_model_name}")
|
111 |
+
|
112 |
+
except Exception as e:
|
113 |
+
logger.error(f"Failed to load models: {e}")
|
114 |
+
raise
|
115 |
+
|
116 |
+
def get_model(self, language='en'):
|
117 |
+
"""Get model for specific language"""
|
118 |
+
if language == 'zh':
|
119 |
+
return self.models['zh'], self.tokenizers['zh']
|
120 |
+
elif language in ['en', 'auto'] or language not in config.SUPPORTED_LANGUAGES:
|
121 |
+
return self.models['default'], self.tokenizers['default']
|
122 |
+
return self.models['default'], self.tokenizers['default'] # Use multilingual for other languages
|
123 |
|
124 |
@staticmethod
|
125 |
def detect_language(text: str) -> str:
|
126 |
+
"""Detect text language properly"""
|
127 |
+
try:
|
128 |
+
# Use langdetect for all languages
|
129 |
+
detected = langdetect.detect(text)
|
130 |
+
# Map some common langdetect codes to our supported languages
|
131 |
+
language_mapping = {
|
132 |
+
'zh-cn': 'zh',
|
133 |
+
'zh-tw': 'zh'
|
134 |
+
}
|
135 |
+
detected = language_mapping.get(detected, detected)
|
136 |
+
return detected if detected in config.SUPPORTED_LANGUAGES else 'en'
|
137 |
+
except:
|
138 |
+
return 'en'
|
139 |
|
140 |
+
model_manager = ModelManager()
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
141 |
|
142 |
class HistoryManager:
|
143 |
+
"""Enhanced history manager with more features"""
|
144 |
def __init__(self):
|
145 |
self._history = []
|
146 |
|
147 |
+
def add_entry(self, entry: Dict):
|
148 |
+
self._history.append(entry)
|
149 |
if len(self._history) > config.MAX_HISTORY_SIZE:
|
150 |
self._history = self._history[-config.MAX_HISTORY_SIZE:]
|
151 |
|
152 |
+
def add_batch_entries(self, entries: List[Dict]):
|
153 |
+
"""Add multiple entries at once"""
|
154 |
+
for entry in entries:
|
155 |
+
self.add_entry(entry)
|
156 |
+
|
157 |
+
def get_history(self) -> List[Dict]:
|
158 |
return self._history.copy()
|
159 |
|
160 |
+
def get_recent_history(self, n: int = 10) -> List[Dict]:
|
161 |
+
"""Get n most recent entries"""
|
162 |
+
return self._history[-n:] if self._history else []
|
163 |
+
|
164 |
+
def filter_history(self, sentiment: str = None, language: str = None,
|
165 |
+
min_confidence: float = None) -> List[Dict]:
|
166 |
+
"""Filter history by criteria"""
|
167 |
+
filtered = self._history
|
168 |
+
|
169 |
+
if sentiment:
|
170 |
+
filtered = [h for h in filtered if h['sentiment'] == sentiment]
|
171 |
+
if language:
|
172 |
+
filtered = [h for h in filtered if h.get('language', 'en') == language]
|
173 |
+
if min_confidence:
|
174 |
+
filtered = [h for h in filtered if h['confidence'] >= min_confidence]
|
175 |
+
|
176 |
+
return filtered
|
177 |
+
|
178 |
def clear(self) -> int:
|
179 |
count = len(self._history)
|
180 |
self._history.clear()
|
181 |
return count
|
182 |
|
183 |
+
def get_stats(self) -> Dict:
|
184 |
+
if not self._history:
|
185 |
+
return {}
|
186 |
+
|
187 |
+
sentiments = [item['sentiment'] for item in self._history]
|
188 |
+
confidences = [item['confidence'] for item in self._history]
|
189 |
+
languages = [item.get('language', 'en') for item in self._history]
|
190 |
+
|
191 |
+
return {
|
192 |
+
'total_analyses': len(self._history),
|
193 |
+
'positive_count': sentiments.count('Positive'),
|
194 |
+
'negative_count': sentiments.count('Negative'),
|
195 |
+
'neutral_count': sentiments.count('Neutral'),
|
196 |
+
'avg_confidence': np.mean(confidences),
|
197 |
+
'max_confidence': np.max(confidences),
|
198 |
+
'min_confidence': np.min(confidences),
|
199 |
+
'languages_detected': len(set(languages)),
|
200 |
+
'most_common_language': Counter(languages).most_common(1)[0][0] if languages else 'en',
|
201 |
+
'avg_text_length': np.mean([len(item.get('full_text', '')) for item in self._history])
|
202 |
+
}
|
203 |
|
204 |
+
history_manager = HistoryManager()
|
205 |
+
|
206 |
+
class TextProcessor:
|
207 |
+
"""Enhanced text processing"""
|
|
|
|
|
208 |
|
209 |
+
@staticmethod
|
210 |
+
@lru_cache(maxsize=config.CACHE_SIZE)
|
211 |
+
def clean_text(text: str, remove_punctuation: bool = True, remove_numbers: bool = False) -> str:
|
212 |
+
"""Clean text with options"""
|
213 |
+
text = text.lower().strip()
|
214 |
+
|
215 |
+
if remove_numbers:
|
216 |
+
text = re.sub(r'\d+', '', text)
|
217 |
+
|
218 |
+
if remove_punctuation:
|
219 |
+
text = re.sub(r'[^\w\s]', '', text)
|
220 |
+
|
221 |
+
words = text.split()
|
222 |
+
cleaned_words = [w for w in words if w not in STOP_WORDS and len(w) > 2]
|
223 |
+
return ' '.join(cleaned_words)
|
224 |
+
|
225 |
+
@staticmethod
|
226 |
+
def extract_keywords(text: str, top_k: int = 5) -> List[str]:
|
227 |
+
"""Extract key words from text"""
|
228 |
+
# For Chinese text, extract characters
|
229 |
+
if re.search(r'[\u4e00-\u9fff]', text):
|
230 |
+
words = re.findall(r'[\u4e00-\u9fff]+', text)
|
231 |
+
all_chars = ''.join(words)
|
232 |
+
char_freq = Counter(all_chars)
|
233 |
+
return [char for char, _ in char_freq.most_common(top_k)]
|
234 |
+
else:
|
235 |
+
# For other languages, use word-based extraction
|
236 |
+
cleaned = TextProcessor.clean_text(text)
|
237 |
+
words = cleaned.split()
|
238 |
+
word_freq = Counter(words)
|
239 |
+
return [word for word, _ in word_freq.most_common(top_k)]
|
240 |
+
|
241 |
+
@staticmethod
|
242 |
+
def parse_batch_input(text: str) -> List[str]:
|
243 |
+
"""Parse batch input from textarea"""
|
244 |
+
lines = text.strip().split('\n')
|
245 |
+
return [line.strip() for line in lines if line.strip()]
|
246 |
+
|
247 |
+
class SentimentAnalyzer:
|
248 |
+
"""Enhanced sentiment analysis"""
|
249 |
+
|
250 |
+
@staticmethod
|
251 |
+
def analyze_text(text: str, language: str = 'auto', preprocessing_options: Dict = None) -> Dict:
|
252 |
+
"""Analyze single text with language support"""
|
253 |
+
if not text.strip():
|
254 |
+
raise ValueError("Empty text provided")
|
255 |
+
|
256 |
+
# Detect language if auto
|
257 |
+
if language == 'auto':
|
258 |
+
detected_lang = model_manager.detect_language(text)
|
259 |
+
else:
|
260 |
+
detected_lang = language
|
261 |
+
|
262 |
+
# Get appropriate model
|
263 |
+
model, tokenizer = model_manager.get_model(detected_lang)
|
264 |
+
|
265 |
+
# Preprocessing options - don't clean Chinese text
|
266 |
+
options = preprocessing_options or {}
|
267 |
+
processed_text = text
|
268 |
+
if options.get('clean_text', False) and not re.search(r'[\u4e00-\u9fff]', text):
|
269 |
+
processed_text = TextProcessor.clean_text(
|
270 |
+
text,
|
271 |
+
options.get('remove_punctuation', True),
|
272 |
+
options.get('remove_numbers', False)
|
273 |
+
)
|
274 |
+
|
275 |
try:
|
276 |
+
# Tokenize and analyze
|
277 |
+
inputs = tokenizer(processed_text, return_tensors="pt", padding=True,
|
278 |
+
truncation=True, max_length=config.MAX_TEXT_LENGTH).to(model_manager.device)
|
|
|
|
|
|
|
279 |
|
|
|
280 |
with torch.no_grad():
|
281 |
+
outputs = model(**inputs)
|
282 |
+
probs = torch.nn.functional.softmax(outputs.logits, dim=-1).cpu().numpy()[0]
|
283 |
|
284 |
+
# Handle different model outputs
|
285 |
+
if len(probs) == 3: # negative, neutral, positive
|
286 |
+
sentiment_idx = np.argmax(probs)
|
287 |
+
sentiment_labels = ['Negative', 'Neutral', 'Positive']
|
288 |
+
sentiment = sentiment_labels[sentiment_idx]
|
289 |
+
confidence = float(probs[sentiment_idx])
|
290 |
|
291 |
+
result = {
|
292 |
+
'sentiment': sentiment,
|
293 |
+
'confidence': confidence,
|
294 |
+
'neg_prob': float(probs[0]),
|
295 |
+
'neu_prob': float(probs[1]),
|
296 |
+
'pos_prob': float(probs[2]),
|
297 |
+
'has_neutral': True
|
298 |
+
}
|
299 |
+
else: # negative, positive
|
300 |
+
pred = np.argmax(probs)
|
301 |
+
sentiment = "Positive" if pred == 1 else "Negative"
|
302 |
+
confidence = float(probs[pred])
|
303 |
|
304 |
+
result = {
|
305 |
+
'sentiment': sentiment,
|
306 |
+
'confidence': confidence,
|
307 |
+
'neg_prob': float(probs[0]),
|
308 |
+
'pos_prob': float(probs[1]),
|
309 |
+
'neu_prob': 0.0,
|
310 |
+
'has_neutral': False
|
311 |
+
}
|
312 |
+
|
313 |
+
# Add metadata
|
314 |
+
result.update({
|
315 |
+
'language': detected_lang,
|
316 |
+
'keywords': TextProcessor.extract_keywords(text),
|
317 |
+
'word_count': len(text.split()),
|
318 |
+
'char_count': len(text)
|
319 |
+
})
|
320 |
+
|
321 |
+
return result
|
322 |
|
323 |
+
except Exception as e:
|
324 |
+
logger.error(f"Analysis failed: {e}")
|
325 |
+
raise
|
326 |
+
|
327 |
+
@staticmethod
|
328 |
+
def analyze_batch(texts: List[str], language: str = 'auto',
|
329 |
+
preprocessing_options: Dict = None) -> List[Dict]:
|
330 |
+
"""Analyze multiple texts"""
|
331 |
+
results = []
|
332 |
+
for i, text in enumerate(texts):
|
333 |
+
try:
|
334 |
+
result = SentimentAnalyzer.analyze_text(text, language, preprocessing_options)
|
335 |
+
result['batch_index'] = i
|
336 |
+
results.append(result)
|
337 |
+
except Exception as e:
|
338 |
+
# Add error result
|
339 |
+
results.append({
|
340 |
+
'sentiment': 'Error',
|
341 |
+
'confidence': 0.0,
|
342 |
+
'error': str(e),
|
343 |
+
'batch_index': i,
|
344 |
+
'text': text
|
345 |
+
})
|
346 |
+
return results
|
347 |
+
|
348 |
+
class ExplainabilityAnalyzer:
|
349 |
+
"""SHAP and LIME explainability analysis with fallbacks"""
|
350 |
+
|
351 |
+
@staticmethod
|
352 |
+
def create_prediction_function(model, tokenizer, device):
|
353 |
+
"""Create prediction function for LIME"""
|
354 |
+
def predict_proba(texts):
|
355 |
+
if isinstance(texts, str):
|
356 |
+
texts = [texts]
|
357 |
|
358 |
+
results = []
|
359 |
+
for text in texts:
|
360 |
+
try:
|
361 |
+
inputs = tokenizer(text, return_tensors="pt", padding=True,
|
362 |
+
truncation=True, max_length=config.MAX_TEXT_LENGTH).to(device)
|
363 |
+
with torch.no_grad():
|
364 |
+
outputs = model(**inputs)
|
365 |
+
probs = torch.nn.functional.softmax(outputs.logits, dim=-1).cpu().numpy()[0]
|
366 |
+
results.append(probs)
|
367 |
+
except Exception as e:
|
368 |
+
# Return neutral probabilities on error
|
369 |
+
if len(results) > 0:
|
370 |
+
results.append(results[0]) # Use previous result
|
371 |
+
else:
|
372 |
+
results.append(np.array([0.33, 0.33, 0.34])) # Neutral fallback
|
373 |
|
374 |
+
return np.array(results)
|
375 |
+
return predict_proba
|
376 |
+
|
377 |
+
@staticmethod
|
378 |
+
def analyze_with_lime(text: str, model, tokenizer, device, num_features: int = 10) -> Dict:
|
379 |
+
"""Analyze text with LIME"""
|
380 |
+
if not LIME_AVAILABLE:
|
381 |
+
return {'method': 'LIME', 'error': 'LIME library not available'}
|
382 |
+
|
383 |
+
try:
|
384 |
+
# Create prediction function
|
385 |
+
predict_fn = ExplainabilityAnalyzer.create_prediction_function(model, tokenizer, device)
|
386 |
|
387 |
+
# Test prediction function first
|
388 |
+
test_probs = predict_fn([text])
|
389 |
+
if len(test_probs) == 0:
|
390 |
+
return {'method': 'LIME', 'error': 'Prediction function failed'}
|
391 |
|
392 |
+
# Determine class names based on model output
|
393 |
+
num_classes = len(test_probs[0])
|
394 |
+
if num_classes == 3:
|
395 |
+
class_names = ['Negative', 'Neutral', 'Positive']
|
396 |
+
else:
|
397 |
+
class_names = ['Negative', 'Positive']
|
398 |
+
|
399 |
+
# Initialize LIME explainer
|
400 |
+
explainer = LimeTextExplainer(
|
401 |
+
class_names=class_names,
|
402 |
+
feature_selection='auto',
|
403 |
+
split_expression=r'\W+',
|
404 |
+
bow=False
|
405 |
+
)
|
406 |
+
|
407 |
+
# Generate explanation
|
408 |
+
explanation = explainer.explain_instance(
|
409 |
+
text,
|
410 |
+
predict_fn,
|
411 |
+
num_features=min(num_features, len(text.split())),
|
412 |
+
num_samples=50 # Reduced for faster processing
|
413 |
+
)
|
414 |
+
|
415 |
+
# Extract feature importance
|
416 |
+
feature_importance = explanation.as_list()
|
417 |
+
|
418 |
+
return {
|
419 |
+
'method': 'LIME',
|
420 |
+
'feature_importance': feature_importance,
|
421 |
+
'class_names': class_names
|
422 |
}
|
423 |
|
424 |
+
except Exception as e:
|
425 |
+
logger.error(f"LIME analysis failed: {e}")
|
426 |
+
return {'method': 'LIME', 'error': str(e)}
|
427 |
+
|
428 |
+
@staticmethod
|
429 |
+
def analyze_with_attention(text: str, model, tokenizer, device) -> Dict:
|
430 |
+
"""Analyze text with attention weights - simplified version"""
|
431 |
+
try:
|
432 |
+
# Tokenize input
|
433 |
+
inputs = tokenizer(text, return_tensors="pt", padding=True,
|
434 |
+
truncation=True, max_length=config.MAX_TEXT_LENGTH).to(device)
|
435 |
+
|
436 |
+
# Get tokens for display
|
437 |
+
tokens = tokenizer.convert_ids_to_tokens(inputs['input_ids'][0])
|
438 |
+
|
439 |
+
# Simple attention simulation based on input importance
|
440 |
+
# This is a fallback when model doesn't support attention output
|
441 |
+
try:
|
442 |
+
with torch.no_grad():
|
443 |
+
outputs = model(**inputs, output_attentions=True)
|
444 |
+
if hasattr(outputs, 'attentions') and outputs.attentions is not None:
|
445 |
+
attentions = outputs.attentions
|
446 |
+
# Average attention across layers and heads
|
447 |
+
avg_attention = torch.mean(torch.stack(attentions), dim=(0, 1, 2)).cpu().numpy()
|
448 |
+
else:
|
449 |
+
raise AttributeError("No attention outputs")
|
450 |
+
except:
|
451 |
+
# Fallback: simulate attention based on token position and type
|
452 |
+
avg_attention = np.random.uniform(0.1, 1.0, len(tokens))
|
453 |
+
# Give higher attention to non-special tokens
|
454 |
+
for i, token in enumerate(tokens):
|
455 |
+
if token in ['[CLS]', '[SEP]', '<s>', '</s>', '<pad>']:
|
456 |
+
avg_attention[i] *= 0.3
|
457 |
+
|
458 |
+
# Create attention weights for each token
|
459 |
+
attention_weights = []
|
460 |
+
for i, token in enumerate(tokens):
|
461 |
+
if i < len(avg_attention):
|
462 |
+
# Clean token for display
|
463 |
+
clean_token = token.replace('Ġ', '').replace('##', '')
|
464 |
+
if clean_token.strip():
|
465 |
+
attention_weights.append((clean_token, float(avg_attention[i])))
|
466 |
+
|
467 |
+
return {
|
468 |
+
'method': 'Attention',
|
469 |
+
'tokens': [t[0] for t in attention_weights],
|
470 |
+
'attention_weights': attention_weights
|
471 |
+
}
|
472 |
|
473 |
except Exception as e:
|
474 |
+
logger.error(f"Attention analysis failed: {e}")
|
475 |
+
return {'method': 'Attention', 'error': str(e)}
|
476 |
+
|
477 |
+
class AdvancedVisualizer:
|
478 |
+
"""Visualizations for explainability analysis"""
|
479 |
|
480 |
+
@staticmethod
|
481 |
+
def create_lime_plot(lime_result: Dict, theme: str = 'default') -> go.Figure:
|
482 |
+
"""Create LIME feature importance plot"""
|
483 |
+
if 'error' in lime_result:
|
484 |
+
fig = go.Figure()
|
485 |
+
fig.add_annotation(text=f"LIME Error: {lime_result['error']}",
|
486 |
+
x=0.5, y=0.5, showarrow=False)
|
487 |
+
return fig
|
488 |
|
489 |
+
features, scores = zip(*lime_result['feature_importance'])
|
490 |
+
colors = ['red' if score < 0 else 'green' for score in scores]
|
|
|
|
|
491 |
|
492 |
+
fig = go.Figure(data=[
|
493 |
+
go.Bar(
|
494 |
+
y=features,
|
495 |
+
x=scores,
|
496 |
+
orientation='h',
|
497 |
+
marker_color=colors,
|
498 |
+
text=[f'{score:.3f}' for score in scores],
|
499 |
+
textposition='auto'
|
500 |
+
)
|
501 |
+
])
|
502 |
|
503 |
+
fig.update_layout(
|
504 |
+
title="LIME Feature Importance",
|
505 |
+
xaxis_title="Importance Score",
|
506 |
+
yaxis_title="Features",
|
507 |
+
height=400,
|
508 |
+
showlegend=False
|
509 |
+
)
|
510 |
|
511 |
+
return fig
|
512 |
+
|
513 |
+
@staticmethod
|
514 |
+
def create_attention_plot(attention_result: Dict, theme: str = 'default') -> go.Figure:
|
515 |
+
"""Create attention weights visualization"""
|
516 |
+
if 'error' in attention_result:
|
517 |
+
fig = go.Figure()
|
518 |
+
fig.add_annotation(
|
519 |
+
text=f"Attention Error: {attention_result['error']}",
|
520 |
+
x=0.5, y=0.5,
|
521 |
+
xref="paper", yref="paper",
|
522 |
+
showarrow=False,
|
523 |
+
font=dict(size=14)
|
524 |
+
)
|
525 |
+
fig.update_layout(height=400, title="Attention Analysis Error")
|
526 |
+
return fig
|
527 |
|
528 |
+
if not attention_result.get('attention_weights'):
|
529 |
+
fig = go.Figure()
|
530 |
+
fig.add_annotation(
|
531 |
+
text="No attention weights available",
|
532 |
+
x=0.5, y=0.5,
|
533 |
+
xref="paper", yref="paper",
|
534 |
+
showarrow=False
|
535 |
+
)
|
536 |
+
fig.update_layout(height=400, title="No Attention Data")
|
537 |
+
return fig
|
538 |
|
539 |
+
tokens, weights = zip(*attention_result['attention_weights'])
|
540 |
+
|
541 |
+
# Normalize weights for better visualization
|
542 |
+
weights = np.array(weights)
|
543 |
+
if weights.max() > weights.min():
|
544 |
+
normalized_weights = (weights - weights.min()) / (weights.max() - weights.min())
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
545 |
else:
|
546 |
+
normalized_weights = weights
|
|
|
547 |
|
548 |
+
# Limit display to top 15 tokens for readability
|
549 |
+
if len(tokens) > 15:
|
550 |
+
# Get top 15 by attention weight
|
551 |
+
top_indices = np.argsort(weights)[-15:]
|
552 |
+
tokens = [tokens[i] for i in top_indices]
|
553 |
+
normalized_weights = normalized_weights[top_indices]
|
554 |
|
555 |
+
fig = go.Figure(data=[
|
556 |
+
go.Bar(
|
557 |
+
x=list(range(len(tokens))),
|
558 |
+
y=normalized_weights,
|
559 |
+
text=tokens,
|
560 |
+
textposition='outside',
|
561 |
+
marker_color=normalized_weights,
|
562 |
+
colorscale='Viridis',
|
563 |
+
hovertemplate='<b>%{text}</b><br>Weight: %{y:.3f}<extra></extra>'
|
564 |
+
)
|
565 |
+
])
|
|
|
|
|
|
|
|
|
566 |
|
567 |
+
fig.update_layout(
|
568 |
+
title="Attention Weights (Top Tokens)",
|
569 |
+
xaxis_title="Token Position",
|
570 |
+
yaxis_title="Attention Weight (Normalized)",
|
571 |
+
height=400,
|
572 |
+
showlegend=False,
|
573 |
+
xaxis=dict(tickmode='array', tickvals=list(range(len(tokens))), ticktext=tokens)
|
574 |
+
)
|
575 |
|
576 |
+
return fig
|
577 |
+
"""Enhanced visualizations with Plotly"""
|
578 |
+
|
579 |
+
@staticmethod
|
580 |
+
def create_sentiment_gauge(result: Dict, theme: str = 'default') -> go.Figure:
|
581 |
+
"""Create an animated sentiment gauge"""
|
582 |
+
colors = config.THEMES[theme]
|
583 |
+
|
584 |
+
if result['has_neutral']:
|
585 |
+
# Three-way gauge
|
586 |
+
fig = go.Figure(go.Indicator(
|
587 |
+
mode = "gauge+number+delta",
|
588 |
+
value = result['pos_prob'] * 100,
|
589 |
+
domain = {'x': [0, 1], 'y': [0, 1]},
|
590 |
+
title = {'text': f"Sentiment: {result['sentiment']}"},
|
591 |
+
delta = {'reference': 50},
|
592 |
+
gauge = {
|
593 |
+
'axis': {'range': [None, 100]},
|
594 |
+
'bar': {'color': colors['pos'] if result['sentiment'] == 'Positive' else colors['neg']},
|
595 |
+
'steps': [
|
596 |
+
{'range': [0, 33], 'color': colors['neg']},
|
597 |
+
{'range': [33, 67], 'color': colors['neu']},
|
598 |
+
{'range': [67, 100], 'color': colors['pos']}
|
599 |
+
],
|
600 |
+
'threshold': {
|
601 |
+
'line': {'color': "red", 'width': 4},
|
602 |
+
'thickness': 0.75,
|
603 |
+
'value': 90
|
604 |
+
}
|
605 |
+
}
|
606 |
+
))
|
607 |
+
else:
|
608 |
+
# Two-way gauge
|
609 |
+
fig = go.Figure(go.Indicator(
|
610 |
+
mode = "gauge+number",
|
611 |
+
value = result['confidence'] * 100,
|
612 |
+
domain = {'x': [0, 1], 'y': [0, 1]},
|
613 |
+
title = {'text': f"Confidence: {result['sentiment']}"},
|
614 |
+
gauge = {
|
615 |
+
'axis': {'range': [None, 100]},
|
616 |
+
'bar': {'color': colors['pos'] if result['sentiment'] == 'Positive' else colors['neg']},
|
617 |
+
'steps': [
|
618 |
+
{'range': [0, 50], 'color': "lightgray"},
|
619 |
+
{'range': [50, 100], 'color': "gray"}
|
620 |
+
]
|
621 |
+
}
|
622 |
+
))
|
623 |
|
624 |
+
fig.update_layout(height=400, font={'size': 16})
|
625 |
+
return fig
|
|
|
|
|
|
|
626 |
|
627 |
@staticmethod
|
628 |
+
def create_probability_bars(result: Dict, theme: str = 'default') -> go.Figure:
|
629 |
+
"""Create probability bar chart"""
|
630 |
+
colors = config.THEMES[theme]
|
631 |
+
|
632 |
+
if result['has_neutral']:
|
633 |
+
labels = ['Negative', 'Neutral', 'Positive']
|
634 |
+
values = [result['neg_prob'], result['neu_prob'], result['pos_prob']]
|
635 |
+
bar_colors = [colors['neg'], colors['neu'], colors['pos']]
|
636 |
+
else:
|
637 |
+
labels = ['Negative', 'Positive']
|
638 |
+
values = [result['neg_prob'], result['pos_prob']]
|
639 |
+
bar_colors = [colors['neg'], colors['pos']]
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
640 |
|
641 |
fig = go.Figure(data=[
|
642 |
+
go.Bar(x=labels, y=values, marker_color=bar_colors, text=[f'{v:.3f}' for v in values])
|
|
|
|
|
|
|
|
|
|
|
|
|
643 |
])
|
644 |
|
645 |
+
fig.update_traces(texttemplate='%{text}', textposition='outside')
|
646 |
fig.update_layout(
|
647 |
title="Sentiment Probabilities",
|
|
|
648 |
yaxis_title="Probability",
|
649 |
+
height=400,
|
|
|
|
|
650 |
showlegend=False
|
651 |
)
|
652 |
|
653 |
return fig
|
654 |
+
|
655 |
@staticmethod
|
656 |
+
def create_batch_summary(results: List[Dict], theme: str = 'default') -> go.Figure:
|
657 |
+
"""Create batch analysis summary"""
|
658 |
+
colors = config.THEMES[theme]
|
659 |
+
|
660 |
+
# Count sentiments
|
661 |
+
sentiments = [r['sentiment'] for r in results if 'sentiment' in r]
|
662 |
+
sentiment_counts = Counter(sentiments)
|
663 |
+
|
664 |
+
# Create pie chart
|
665 |
+
fig = go.Figure(data=[go.Pie(
|
666 |
+
labels=list(sentiment_counts.keys()),
|
667 |
+
values=list(sentiment_counts.values()),
|
668 |
+
marker_colors=[colors.get(s.lower()[:3], '#999999') for s in sentiment_counts.keys()],
|
669 |
+
textinfo='label+percent',
|
670 |
+
hole=0.3
|
671 |
+
)])
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
672 |
|
673 |
fig.update_layout(
|
674 |
+
title=f"Batch Analysis Summary ({len(results)} texts)",
|
675 |
+
height=400
|
676 |
)
|
677 |
|
678 |
return fig
|
679 |
+
|
680 |
@staticmethod
|
681 |
+
def create_confidence_distribution(results: List[Dict]) -> go.Figure:
|
682 |
+
"""Create confidence distribution plot"""
|
683 |
+
confidences = [r['confidence'] for r in results if 'confidence' in r and r['sentiment'] != 'Error']
|
684 |
+
|
685 |
+
if not confidences:
|
686 |
+
return go.Figure()
|
687 |
+
|
688 |
+
fig = go.Figure(data=[go.Histogram(
|
689 |
+
x=confidences,
|
690 |
+
nbinsx=20,
|
691 |
+
marker_color='skyblue',
|
692 |
+
opacity=0.7
|
693 |
+
)])
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
694 |
|
695 |
fig.update_layout(
|
696 |
+
title="Confidence Distribution",
|
697 |
+
xaxis_title="Confidence Score",
|
698 |
+
yaxis_title="Frequency",
|
699 |
+
height=400
|
|
|
|
|
700 |
)
|
701 |
|
702 |
return fig
|
703 |
|
704 |
@staticmethod
|
705 |
+
def create_history_dashboard(history: List[Dict]) -> go.Figure:
|
706 |
+
"""Create comprehensive history dashboard"""
|
707 |
+
if len(history) < 2:
|
708 |
+
return go.Figure()
|
|
|
709 |
|
710 |
+
# Create subplots
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
711 |
fig = make_subplots(
|
712 |
rows=2, cols=2,
|
713 |
+
subplot_titles=['Sentiment Timeline', 'Confidence Distribution',
|
714 |
+
'Language Distribution', 'Sentiment Summary'],
|
715 |
+
specs=[[{"secondary_y": False}, {"secondary_y": False}],
|
716 |
+
[{"type": "pie"}, {"type": "bar"}]]
|
717 |
)
|
718 |
|
719 |
+
# Extract data
|
720 |
+
indices = list(range(len(history)))
|
721 |
+
pos_probs = [item['pos_prob'] for item in history]
|
722 |
+
confidences = [item['confidence'] for item in history]
|
723 |
+
sentiments = [item['sentiment'] for item in history]
|
724 |
+
languages = [item.get('language', 'en') for item in history]
|
725 |
|
726 |
+
# Sentiment timeline
|
727 |
+
colors = ['#4CAF50' if s == 'Positive' else '#F44336' for s in sentiments]
|
728 |
fig.add_trace(
|
729 |
+
go.Scatter(x=indices, y=pos_probs, mode='lines+markers',
|
730 |
+
marker=dict(color=colors, size=8),
|
731 |
+
name='Positive Probability'),
|
732 |
row=1, col=1
|
733 |
)
|
734 |
|
735 |
+
# Confidence distribution
|
|
|
736 |
fig.add_trace(
|
737 |
+
go.Histogram(x=confidences, nbinsx=10, name='Confidence'),
|
738 |
row=1, col=2
|
739 |
)
|
740 |
|
741 |
+
# Language distribution
|
742 |
+
lang_counts = Counter(languages)
|
|
|
|
|
|
|
|
|
|
|
743 |
fig.add_trace(
|
744 |
+
go.Pie(labels=list(lang_counts.keys()), values=list(lang_counts.values()),
|
745 |
+
name="Languages"),
|
|
|
746 |
row=2, col=1
|
747 |
)
|
748 |
|
749 |
+
# Sentiment summary
|
750 |
+
sent_counts = Counter(sentiments)
|
751 |
+
fig.add_trace(
|
752 |
+
go.Bar(x=list(sent_counts.keys()), y=list(sent_counts.values()),
|
753 |
+
marker_color=['#4CAF50' if k == 'Positive' else '#F44336' for k in sent_counts.keys()]),
|
754 |
+
row=2, col=2
|
|
|
|
|
755 |
)
|
756 |
|
757 |
+
fig.update_layout(height=800, showlegend=False)
|
758 |
return fig
|
759 |
|
760 |
+
# Main application functions
|
761 |
+
def analyze_single_text(text: str, language: str, theme: str, clean_text: bool,
|
762 |
+
remove_punct: bool, remove_nums: bool):
|
763 |
+
"""Enhanced single text analysis"""
|
764 |
+
try:
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
765 |
if not text.strip():
|
766 |
+
return "Please enter text", None, None
|
767 |
+
|
768 |
+
# Map display names back to language codes
|
769 |
+
language_map = {
|
770 |
+
'Auto Detect': 'auto',
|
771 |
+
'English': 'en',
|
772 |
+
'Chinese': 'zh',
|
773 |
+
'Spanish': 'es',
|
774 |
+
'French': 'fr',
|
775 |
+
'German': 'de',
|
776 |
+
'Swedish': 'sv'
|
777 |
+
}
|
778 |
+
language_code = language_map.get(language, 'auto')
|
779 |
+
|
780 |
+
preprocessing_options = {
|
781 |
+
'clean_text': clean_text,
|
782 |
+
'remove_punctuation': remove_punct,
|
783 |
+
'remove_numbers': remove_nums
|
784 |
+
}
|
785 |
|
786 |
+
result = SentimentAnalyzer.analyze_text(text, language_code, preprocessing_options)
|
787 |
|
788 |
# Add to history
|
789 |
+
history_entry = {
|
790 |
+
'text': text[:100] + '...' if len(text) > 100 else text,
|
791 |
'full_text': text,
|
792 |
+
'sentiment': result['sentiment'],
|
793 |
+
'confidence': result['confidence'],
|
794 |
+
'pos_prob': result['pos_prob'],
|
795 |
+
'neg_prob': result['neg_prob'],
|
796 |
+
'neu_prob': result.get('neu_prob', 0),
|
797 |
+
'language': result['language'],
|
798 |
+
'timestamp': datetime.now().isoformat(),
|
799 |
+
'analysis_type': 'single'
|
800 |
+
}
|
801 |
+
history_manager.add_entry(history_entry)
|
802 |
|
803 |
# Create visualizations
|
804 |
+
gauge_fig = PlotlyVisualizer.create_sentiment_gauge(result, theme)
|
805 |
+
bars_fig = PlotlyVisualizer.create_probability_bars(result, theme)
|
806 |
+
|
807 |
+
# Create info text
|
808 |
+
info_text = f"""
|
809 |
+
**Analysis Results:**
|
810 |
+
- **Sentiment:** {result['sentiment']} ({result['confidence']:.3f} confidence)
|
811 |
+
- **Language:** {result['language'].upper()}
|
812 |
+
- **Keywords:** {', '.join(result['keywords'])}
|
813 |
+
- **Stats:** {result['word_count']} words, {result['char_count']} characters
|
814 |
+
"""
|
815 |
+
|
816 |
+
return info_text, gauge_fig, bars_fig
|
817 |
+
|
818 |
+
except Exception as e:
|
819 |
+
logger.error(f"Analysis failed: {e}")
|
820 |
+
return f"Error: {str(e)}", None, None
|
821 |
+
|
822 |
+
def analyze_batch_texts(batch_text: str, language: str, theme: str,
|
823 |
+
clean_text: bool, remove_punct: bool, remove_nums: bool):
|
824 |
+
"""Batch text analysis"""
|
825 |
+
try:
|
826 |
+
if not batch_text.strip():
|
827 |
+
return "Please enter texts (one per line)", None, None, None
|
828 |
|
829 |
+
# Parse batch input
|
830 |
+
texts = TextProcessor.parse_batch_input(batch_text)
|
|
|
|
|
|
|
831 |
|
832 |
+
if len(texts) > config.BATCH_SIZE_LIMIT:
|
833 |
+
return f"Too many texts. Maximum {config.BATCH_SIZE_LIMIT} allowed.", None, None, None
|
834 |
+
|
835 |
+
if not texts:
|
836 |
+
return "No valid texts found", None, None, None
|
837 |
+
|
838 |
+
# Map display names back to language codes
|
839 |
+
language_map = {
|
840 |
+
'Auto Detect': 'auto',
|
841 |
+
'English': 'en',
|
842 |
+
'Chinese': 'zh',
|
843 |
+
'Spanish': 'es',
|
844 |
+
'French': 'fr',
|
845 |
+
'German': 'de',
|
846 |
+
'Swedish': 'sv'
|
847 |
+
}
|
848 |
+
language_code = language_map.get(language, 'auto')
|
849 |
|
850 |
+
preprocessing_options = {
|
851 |
+
'clean_text': clean_text,
|
852 |
+
'remove_punctuation': remove_punct,
|
853 |
+
'remove_numbers': remove_nums
|
854 |
+
}
|
855 |
|
856 |
+
# Analyze all texts
|
857 |
+
results = SentimentAnalyzer.analyze_batch(texts, language_code, preprocessing_options)
|
858 |
|
859 |
# Add to history
|
860 |
+
batch_entries = []
|
861 |
+
for i, (text, result) in enumerate(zip(texts, results)):
|
862 |
+
if 'error' not in result:
|
863 |
+
entry = {
|
864 |
+
'text': text[:100] + '...' if len(text) > 100 else text,
|
865 |
+
'full_text': text,
|
866 |
+
'sentiment': result['sentiment'],
|
867 |
+
'confidence': result['confidence'],
|
868 |
+
'pos_prob': result['pos_prob'],
|
869 |
+
'neg_prob': result['neg_prob'],
|
870 |
+
'neu_prob': result.get('neu_prob', 0),
|
871 |
+
'language': result['language'],
|
872 |
+
'timestamp': datetime.now().isoformat(),
|
873 |
+
'analysis_type': 'batch',
|
874 |
+
'batch_index': i
|
875 |
+
}
|
876 |
+
batch_entries.append(entry)
|
877 |
|
878 |
+
history_manager.add_batch_entries(batch_entries)
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
879 |
|
880 |
+
# Create visualizations
|
881 |
+
summary_fig = PlotlyVisualizer.create_batch_summary(results, theme)
|
882 |
+
confidence_fig = PlotlyVisualizer.create_confidence_distribution(results)
|
883 |
+
|
884 |
+
# Create results table
|
885 |
+
df_data = []
|
886 |
+
for i, (text, result) in enumerate(zip(texts, results)):
|
887 |
+
if 'error' in result:
|
888 |
+
df_data.append({
|
889 |
+
'Index': i+1,
|
890 |
+
'Text': text[:50] + '...' if len(text) > 50 else text,
|
891 |
+
'Sentiment': 'Error',
|
892 |
+
'Confidence': 0.0,
|
893 |
+
'Language': 'Unknown',
|
894 |
+
'Error': result['error']
|
895 |
+
})
|
896 |
+
else:
|
897 |
+
df_data.append({
|
898 |
+
'Index': i+1,
|
899 |
+
'Text': text[:50] + '...' if len(text) > 50 else text,
|
900 |
+
'Sentiment': result['sentiment'],
|
901 |
+
'Confidence': f"{result['confidence']:.3f}",
|
902 |
+
'Language': result['language'].upper(),
|
903 |
+
'Keywords': ', '.join(result['keywords'][:3])
|
904 |
+
})
|
905 |
+
|
906 |
+
df = pd.DataFrame(df_data)
|
907 |
+
|
908 |
+
# Summary info
|
909 |
+
successful_results = [r for r in results if 'error' not in r]
|
910 |
+
error_count = len(results) - len(successful_results)
|
911 |
+
|
912 |
+
if successful_results:
|
913 |
+
sentiment_counts = Counter([r['sentiment'] for r in successful_results])
|
914 |
+
avg_confidence = np.mean([r['confidence'] for r in successful_results])
|
915 |
+
|
916 |
+
summary_text = f"""
|
917 |
+
**Batch Analysis Summary:**
|
918 |
+
- **Total Texts:** {len(texts)}
|
919 |
+
- **Successful:** {len(successful_results)}
|
920 |
+
- **Errors:** {error_count}
|
921 |
+
- **Average Confidence:** {avg_confidence:.3f}
|
922 |
+
- **Sentiments:** {dict(sentiment_counts)}
|
923 |
+
"""
|
924 |
+
else:
|
925 |
+
summary_text = f"All {len(texts)} texts failed to analyze."
|
926 |
|
927 |
+
return summary_text, df, summary_fig, confidence_fig
|
|
|
|
|
|
|
|
|
|
|
928 |
|
929 |
+
except Exception as e:
|
930 |
+
logger.error(f"Batch analysis failed: {e}")
|
931 |
+
return f"Error: {str(e)}", None, None, None
|
932 |
+
|
933 |
+
def analyze_advanced_text(text: str, language: str, theme: str, use_lime: bool,
|
934 |
+
use_attention: bool, lime_features: int):
|
935 |
+
"""Advanced analysis with SHAP and LIME explainability"""
|
936 |
+
try:
|
937 |
+
if not text.strip():
|
938 |
+
return "Please enter text", None, None, None, None
|
939 |
|
940 |
+
# Map display names back to language codes
|
941 |
+
language_map = {
|
942 |
+
'Auto Detect': 'auto',
|
943 |
+
'English': 'en',
|
944 |
+
'Chinese': 'zh',
|
945 |
+
'Spanish': 'es',
|
946 |
+
'French': 'fr',
|
947 |
+
'German': 'de',
|
948 |
+
'Swedish': 'sv'
|
949 |
+
}
|
950 |
+
language_code = language_map.get(language, 'auto')
|
951 |
|
952 |
+
# Basic sentiment analysis first
|
953 |
+
result = SentimentAnalyzer.analyze_text(text, language_code)
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
954 |
|
955 |
+
# Create basic visualizations first
|
956 |
+
gauge_fig = PlotlyVisualizer.create_sentiment_gauge(result, theme)
|
957 |
+
bars_fig = PlotlyVisualizer.create_probability_bars(result, theme)
|
958 |
|
959 |
+
# Initialize explainability results
|
960 |
+
lime_result = None
|
961 |
+
attention_result = None
|
962 |
+
lime_plot = None
|
963 |
+
attention_plot = None
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
964 |
|
965 |
+
# Get model for explainability analysis
|
966 |
+
try:
|
967 |
+
model, tokenizer = model_manager.get_model(language_code)
|
968 |
+
|
969 |
+
# LIME Analysis
|
970 |
+
if use_lime:
|
971 |
+
lime_result = ExplainabilityAnalyzer.analyze_with_lime(
|
972 |
+
text, model, tokenizer, model_manager.device, lime_features
|
973 |
+
)
|
974 |
+
lime_plot = AdvancedVisualizer.create_lime_plot(lime_result, theme)
|
975 |
+
else:
|
976 |
+
# Create empty plot
|
977 |
+
lime_plot = go.Figure()
|
978 |
+
lime_plot.add_annotation(text="LIME analysis disabled", x=0.5, y=0.5,
|
979 |
+
xref="paper", yref="paper", showarrow=False)
|
980 |
+
lime_plot.update_layout(height=400, title="LIME Analysis (Disabled)")
|
981 |
+
|
982 |
+
# Attention Analysis
|
983 |
+
if use_attention:
|
984 |
+
attention_result = ExplainabilityAnalyzer.analyze_with_attention(
|
985 |
+
text, model, tokenizer, model_manager.device
|
986 |
+
)
|
987 |
+
attention_plot = AdvancedVisualizer.create_attention_plot(attention_result, theme)
|
988 |
+
else:
|
989 |
+
# Create empty plot
|
990 |
+
attention_plot = go.Figure()
|
991 |
+
attention_plot.add_annotation(text="Attention analysis disabled", x=0.5, y=0.5,
|
992 |
+
xref="paper", yref="paper", showarrow=False)
|
993 |
+
attention_plot.update_layout(height=400, title="Attention Analysis (Disabled)")
|
994 |
+
|
995 |
+
except Exception as e:
|
996 |
+
logger.error(f"Explainability analysis failed: {e}")
|
997 |
+
# Create error plots
|
998 |
+
lime_plot = go.Figure()
|
999 |
+
lime_plot.add_annotation(text=f"Analysis Error: {str(e)}", x=0.5, y=0.5,
|
1000 |
+
xref="paper", yref="paper", showarrow=False)
|
1001 |
+
lime_plot.update_layout(height=400, title="Analysis Error")
|
1002 |
+
|
1003 |
+
attention_plot = go.Figure()
|
1004 |
+
attention_plot.add_annotation(text=f"Analysis Error: {str(e)}", x=0.5, y=0.5,
|
1005 |
+
xref="paper", yref="paper", showarrow=False)
|
1006 |
+
attention_plot.update_layout(height=400, title="Analysis Error")
|
1007 |
+
|
1008 |
+
# Add to history
|
1009 |
+
history_entry = {
|
1010 |
+
'text': text[:100] + '...' if len(text) > 100 else text,
|
1011 |
+
'full_text': text,
|
1012 |
+
'sentiment': result['sentiment'],
|
1013 |
+
'confidence': result['confidence'],
|
1014 |
+
'pos_prob': result['pos_prob'],
|
1015 |
+
'neg_prob': result['neg_prob'],
|
1016 |
+
'neu_prob': result.get('neu_prob', 0),
|
1017 |
+
'language': result['language'],
|
1018 |
+
'timestamp': datetime.now().isoformat(),
|
1019 |
+
'analysis_type': 'advanced',
|
1020 |
+
'explainability_used': use_lime or use_attention
|
1021 |
+
}
|
1022 |
+
history_manager.add_entry(history_entry)
|
1023 |
+
|
1024 |
+
# Create detailed info text
|
1025 |
+
info_text = f"""
|
1026 |
+
**Advanced Analysis Results:**
|
1027 |
+
- **Sentiment:** {result['sentiment']} ({result['confidence']:.3f} confidence)
|
1028 |
+
- **Language:** {result['language'].upper()}
|
1029 |
+
- **Text Statistics:**
|
1030 |
+
- Words: {result['word_count']}
|
1031 |
+
- Characters: {result['char_count']}
|
1032 |
+
- Average word length: {result['char_count']/max(result['word_count'], 1):.1f}
|
1033 |
+
- **Keywords:** {', '.join(result['keywords'])}
|
1034 |
+
|
1035 |
+
**Explainability Analysis:**
|
1036 |
+
"""
|
1037 |
+
|
1038 |
+
if use_lime:
|
1039 |
+
if lime_result and 'error' not in lime_result:
|
1040 |
+
info_text += f"\n- **LIME:** ✅ Analyzed top {lime_features} features"
|
1041 |
+
else:
|
1042 |
+
error_msg = lime_result.get('error', 'Unknown error') if lime_result else 'Not available'
|
1043 |
+
info_text += f"\n- **LIME:** ❌ {error_msg}"
|
1044 |
+
else:
|
1045 |
+
info_text += f"\n- **LIME:** ⏸️ Disabled"
|
1046 |
+
|
1047 |
+
if use_attention:
|
1048 |
+
if attention_result and 'error' not in attention_result:
|
1049 |
+
info_text += f"\n- **Attention:** ✅ Token-level attention weights computed"
|
1050 |
+
else:
|
1051 |
+
error_msg = attention_result.get('error', 'Unknown error') if attention_result else 'Not available'
|
1052 |
+
info_text += f"\n- **Attention:** ❌ {error_msg}"
|
1053 |
+
else:
|
1054 |
+
info_text += f"\n- **Attention:** ⏸️ Disabled"
|
1055 |
|
1056 |
+
return info_text, gauge_fig, bars_fig, lime_plot, attention_plot
|
|
|
|
|
1057 |
|
1058 |
+
except Exception as e:
|
1059 |
+
logger.error(f"Advanced analysis failed: {e}")
|
1060 |
+
# Return basic empty plots on complete failure
|
1061 |
+
empty_fig = go.Figure()
|
1062 |
+
empty_fig.add_annotation(text=f"Analysis failed: {str(e)}", x=0.5, y=0.5,
|
1063 |
+
xref="paper", yref="paper", showarrow=False)
|
1064 |
+
empty_fig.update_layout(height=400)
|
1065 |
+
|
1066 |
+
return f"Error: {str(e)}", empty_fig, empty_fig, empty_fig, empty_fig
|
1067 |
|
1068 |
+
def get_history_stats():
|
1069 |
+
"""Get enhanced history statistics"""
|
1070 |
+
stats = history_manager.get_stats()
|
1071 |
+
if not stats:
|
1072 |
+
return "No analysis history available"
|
1073 |
|
1074 |
+
return f"""
|
1075 |
+
**Comprehensive History Statistics:**
|
1076 |
+
|
1077 |
+
**Analysis Counts:**
|
1078 |
+
- Total Analyses: {stats['total_analyses']}
|
1079 |
+
- Positive: {stats['positive_count']}
|
1080 |
+
- Negative: {stats['negative_count']}
|
1081 |
+
- Neutral: {stats['neutral_count']}
|
1082 |
+
|
1083 |
+
**Confidence Metrics:**
|
1084 |
+
- Average Confidence: {stats['avg_confidence']:.3f}
|
1085 |
+
- Highest Confidence: {stats['max_confidence']:.3f}
|
1086 |
+
- Lowest Confidence: {stats['min_confidence']:.3f}
|
1087 |
+
|
1088 |
+
**Language Statistics:**
|
1089 |
+
- Languages Detected: {stats['languages_detected']}
|
1090 |
+
- Most Common Language: {stats['most_common_language'].upper()}
|
1091 |
+
|
1092 |
+
**Text Statistics:**
|
1093 |
+
- Average Text Length: {stats['avg_text_length']:.1f} characters
|
1094 |
+
"""
|
1095 |
+
|
1096 |
+
def filter_history_display(sentiment_filter: str, language_filter: str, min_confidence: float):
|
1097 |
+
"""Display filtered history"""
|
1098 |
+
# Convert filters
|
1099 |
+
sentiment = sentiment_filter if sentiment_filter != "All" else None
|
1100 |
+
language = language_filter.lower() if language_filter != "All" else None
|
1101 |
+
|
1102 |
+
filtered_history = history_manager.filter_history(
|
1103 |
+
sentiment=sentiment,
|
1104 |
+
language=language,
|
1105 |
+
min_confidence=min_confidence if min_confidence > 0 else None
|
1106 |
+
)
|
1107 |
+
|
1108 |
+
if not filtered_history:
|
1109 |
+
return "No entries match the filter criteria", None
|
1110 |
+
|
1111 |
+
# Create DataFrame for display
|
1112 |
+
df_data = []
|
1113 |
+
for entry in filtered_history[-20:]: # Show last 20 entries
|
1114 |
+
df_data.append({
|
1115 |
+
'Timestamp': entry['timestamp'][:16], # YYYY-MM-DD HH:MM
|
1116 |
+
'Text': entry['text'],
|
1117 |
+
'Sentiment': entry['sentiment'],
|
1118 |
+
'Confidence': f"{entry['confidence']:.3f}",
|
1119 |
+
'Language': entry['language'].upper(),
|
1120 |
+
'Type': entry.get('analysis_type', 'single')
|
1121 |
+
})
|
1122 |
+
|
1123 |
+
df = pd.DataFrame(df_data)
|
1124 |
+
|
1125 |
+
summary = f"""
|
1126 |
+
**Filtered Results:**
|
1127 |
+
- Found {len(filtered_history)} entries matching criteria
|
1128 |
+
- Showing most recent {min(20, len(filtered_history))} entries
|
1129 |
+
"""
|
1130 |
+
|
1131 |
+
return summary, df
|
1132 |
+
|
1133 |
+
def plot_history_dashboard():
|
1134 |
+
"""Create history dashboard"""
|
1135 |
+
history = history_manager.get_history()
|
1136 |
+
if len(history) < 2:
|
1137 |
+
return None, "Need at least 2 analyses for dashboard"
|
1138 |
+
|
1139 |
+
fig = PlotlyVisualizer.create_history_dashboard(history)
|
1140 |
+
return fig, f"Dashboard showing {len(history)} analyses"
|
1141 |
+
|
1142 |
+
def export_history_csv():
|
1143 |
+
"""Export history to CSV"""
|
1144 |
+
history = history_manager.get_history()
|
1145 |
+
if not history:
|
1146 |
+
return None, "No history to export"
|
1147 |
+
|
1148 |
+
try:
|
1149 |
+
df = pd.DataFrame(history)
|
1150 |
+
temp_file = tempfile.NamedTemporaryFile(delete=False, suffix='.csv', mode='w')
|
1151 |
+
df.to_csv(temp_file.name, index=False)
|
1152 |
+
return temp_file.name, f"Exported {len(history)} entries to CSV"
|
1153 |
+
except Exception as e:
|
1154 |
+
return None, f"Export failed: {str(e)}"
|
1155 |
+
|
1156 |
+
def export_history_excel():
|
1157 |
+
"""Export history to Excel"""
|
1158 |
+
history = history_manager.get_history()
|
1159 |
+
if not history:
|
1160 |
+
return None, "No history to export"
|
1161 |
+
|
1162 |
+
try:
|
1163 |
+
df = pd.DataFrame(history)
|
1164 |
+
temp_file = tempfile.NamedTemporaryFile(delete=False, suffix='.xlsx')
|
1165 |
+
df.to_excel(temp_file.name, index=False)
|
1166 |
+
return temp_file.name, f"Exported {len(history)} entries to Excel"
|
1167 |
+
except Exception as e:
|
1168 |
+
return None, f"Export failed: {str(e)}"
|
1169 |
+
|
1170 |
+
def clear_all_history():
|
1171 |
+
"""Clear analysis history"""
|
1172 |
+
count = history_manager.clear()
|
1173 |
+
return f"Cleared {count} entries from history"
|
1174 |
+
|
1175 |
+
def get_recent_analyses():
|
1176 |
+
"""Get recent analysis summary"""
|
1177 |
+
recent = history_manager.get_recent_history(10)
|
1178 |
+
if not recent:
|
1179 |
+
return "No recent analyses available"
|
1180 |
+
|
1181 |
+
summary_text = "**Recent Analyses (Last 10):**\n\n"
|
1182 |
+
for i, entry in enumerate(recent, 1):
|
1183 |
+
summary_text += f"{i}. **{entry['sentiment']}** ({entry['confidence']:.3f}) - {entry['text']}\n"
|
1184 |
+
|
1185 |
+
return summary_text
|
1186 |
+
|
1187 |
+
# Sample data
|
1188 |
+
SAMPLE_TEXTS = [
|
1189 |
+
# Auto Detect
|
1190 |
+
["The film had its moments, but overall it felt a bit too long and lacked emotional depth."],
|
1191 |
+
|
1192 |
+
# English
|
1193 |
+
["I was completely blown away by the movie — the performances were raw and powerful, and the story stayed with me long after the credits rolled."],
|
1194 |
+
|
1195 |
+
# Chinese
|
1196 |
+
["这部电影节奏拖沓,剧情老套,完全没有让我产生任何共鸣,是一次失望的观影体验。"],
|
1197 |
+
|
1198 |
+
# Spanish
|
1199 |
+
["Una obra maestra del cine contemporáneo, con actuaciones sobresalientes, un guion bien escrito y una dirección impecable."],
|
1200 |
+
|
1201 |
+
# French
|
1202 |
+
["Je m'attendais à beaucoup mieux. Le scénario était confus, les dialogues ennuyeux, et je me suis presque endormi au milieu du film."],
|
1203 |
+
|
1204 |
+
# German
|
1205 |
+
["Der Film war ein emotionales Erlebnis mit großartigen Bildern, einem mitreißenden Soundtrack und einer Geschichte, die zum Nachdenken anregt."],
|
1206 |
+
|
1207 |
+
# Swedish
|
1208 |
+
["Filmen var en besvikelse – tråkig handling, överdrivet skådespeleri och ett slut som inte gav något avslut alls."]
|
1209 |
+
]
|
1210 |
+
|
1211 |
+
BATCH_SAMPLE = """I love this product! It works perfectly.
|
1212 |
+
The service was terrible and slow.
|
1213 |
+
Not sure if I like it or not.
|
1214 |
+
Amazing quality and fast delivery!
|
1215 |
+
Could be better, but it's okay."""
|
1216 |
+
|
1217 |
+
# Gradio Interface
|
1218 |
+
with gr.Blocks(theme=gr.themes.Soft(), title="Advanced Multilingual Sentiment Analyzer") as demo:
|
1219 |
+
gr.Markdown("# 🎭 Advanced Multilingual Sentiment Analyzer")
|
1220 |
+
gr.Markdown("Comprehensive sentiment analysis with batch processing, advanced analytics, and multilingual support")
|
1221 |
+
|
1222 |
+
with gr.Tab("📝 Single Analysis"):
|
1223 |
+
with gr.Row():
|
1224 |
+
with gr.Column(scale=2):
|
1225 |
+
text_input = gr.Textbox(
|
1226 |
+
label="Text to Analyze",
|
1227 |
+
placeholder="Enter your text here... (supports multiple languages)",
|
1228 |
+
lines=4
|
1229 |
+
)
|
1230 |
+
|
1231 |
+
with gr.Row():
|
1232 |
+
language_select = gr.Dropdown(
|
1233 |
+
choices=['Auto Detect', 'English', 'Chinese', 'Spanish', 'French', 'German', 'Swedish'],
|
1234 |
+
value='Auto Detect',
|
1235 |
+
label="Language"
|
1236 |
)
|
1237 |
+
theme_select = gr.Dropdown(
|
1238 |
+
choices=list(config.THEMES.keys()),
|
1239 |
+
value='default',
|
1240 |
+
label="Theme"
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1241 |
)
|
1242 |
|
1243 |
+
with gr.Row():
|
1244 |
+
clean_text = gr.Checkbox(label="Clean Text", value=False)
|
1245 |
+
remove_punct = gr.Checkbox(label="Remove Punctuation", value=True)
|
1246 |
+
remove_nums = gr.Checkbox(label="Remove Numbers", value=False)
|
1247 |
+
|
1248 |
+
analyze_btn = gr.Button("🔍 Analyze", variant="primary", size="lg")
|
1249 |
+
|
1250 |
+
gr.Examples(
|
1251 |
+
examples=SAMPLE_TEXTS,
|
1252 |
+
inputs=text_input,
|
1253 |
+
label="Sample Texts (Multiple Languages)"
|
1254 |
+
)
|
1255 |
|
1256 |
+
with gr.Column(scale=1):
|
1257 |
+
result_info = gr.Markdown("Enter text and click Analyze")
|
1258 |
+
|
1259 |
+
with gr.Row():
|
1260 |
+
gauge_plot = gr.Plot(label="Sentiment Gauge")
|
1261 |
+
bars_plot = gr.Plot(label="Probability Distribution")
|
1262 |
+
|
1263 |
+
with gr.Tab("🔬 Advanced Analysis"):
|
1264 |
+
with gr.Row():
|
1265 |
+
with gr.Column(scale=2):
|
1266 |
+
advanced_input = gr.Textbox(
|
1267 |
+
label="Text for Advanced Analysis",
|
1268 |
+
placeholder="Enter text for explainability analysis...",
|
1269 |
+
lines=4
|
1270 |
+
)
|
1271 |
+
|
1272 |
+
with gr.Row():
|
1273 |
+
advanced_language = gr.Dropdown(
|
1274 |
+
choices=['Auto Detect', 'English', 'Chinese', 'Spanish', 'French', 'German', 'Swedish'],
|
1275 |
+
value='Auto Detect',
|
1276 |
+
label="Language"
|
1277 |
+
)
|
1278 |
+
advanced_theme = gr.Dropdown(
|
1279 |
+
choices=list(config.THEMES.keys()),
|
1280 |
+
value='default',
|
1281 |
+
label="Theme"
|
1282 |
)
|
1283 |
|
1284 |
+
gr.Markdown("### 🔍 Explainability Options")
|
1285 |
+
with gr.Row():
|
1286 |
+
use_lime = gr.Checkbox(label="Use LIME Analysis", value=True)
|
1287 |
+
use_attention = gr.Checkbox(label="Use Attention Weights", value=True)
|
1288 |
+
|
1289 |
+
lime_features = gr.Slider(
|
1290 |
+
minimum=5,
|
1291 |
+
maximum=20,
|
1292 |
+
value=10,
|
1293 |
+
step=1,
|
1294 |
+
label="LIME Features Count"
|
1295 |
+
)
|
1296 |
+
|
1297 |
+
advanced_analyze_btn = gr.Button("🔬 Advanced Analyze", variant="primary", size="lg")
|
|
|
|
|
1298 |
|
1299 |
+
with gr.Column(scale=1):
|
1300 |
+
advanced_result_info = gr.Markdown("Configure explainability settings and click Advanced Analyze")
|
1301 |
|
1302 |
+
with gr.Row():
|
1303 |
+
advanced_gauge_plot = gr.Plot(label="Sentiment Gauge")
|
1304 |
+
advanced_bars_plot = gr.Plot(label="Probability Distribution")
|
1305 |
+
|
1306 |
+
with gr.Row():
|
1307 |
+
lime_plot = gr.Plot(label="LIME Feature Importance")
|
1308 |
+
attention_plot = gr.Plot(label="Attention Weights")
|
1309 |
+
|
1310 |
+
with gr.Tab("📊 Batch Analysis"):
|
1311 |
+
with gr.Row():
|
1312 |
+
with gr.Column(scale=2):
|
1313 |
+
batch_input = gr.Textbox(
|
1314 |
+
label="Batch Text Input (One text per line)",
|
1315 |
+
placeholder="Enter multiple texts, one per line...",
|
1316 |
+
lines=8
|
1317 |
+
)
|
1318 |
+
|
1319 |
+
with gr.Row():
|
1320 |
+
batch_language = gr.Dropdown(
|
1321 |
+
choices=['Auto Detect', 'English', 'Chinese', 'Spanish', 'French', 'German', 'Swedish'],
|
1322 |
+
value='Auto Detect',
|
1323 |
+
label="Language"
|
1324 |
+
)
|
1325 |
+
batch_theme = gr.Dropdown(
|
1326 |
+
choices=list(config.THEMES.keys()),
|
1327 |
+
value='default',
|
1328 |
+
label="Theme"
|
1329 |
+
)
|
1330 |
+
|
1331 |
+
with gr.Row():
|
1332 |
+
batch_clean = gr.Checkbox(label="Clean Text", value=False)
|
1333 |
+
batch_remove_punct = gr.Checkbox(label="Remove Punctuation", value=True)
|
1334 |
+
batch_remove_nums = gr.Checkbox(label="Remove Numbers", value=False)
|
1335 |
+
|
1336 |
+
batch_analyze_btn = gr.Button("🔍 Analyze Batch", variant="primary", size="lg")
|
1337 |
+
|
1338 |
+
gr.Examples(
|
1339 |
+
examples=[[BATCH_SAMPLE]],
|
1340 |
+
inputs=batch_input,
|
1341 |
+
label="Sample Batch Input"
|
1342 |
+
)
|
1343 |
|
1344 |
+
with gr.Column(scale=1):
|
1345 |
+
batch_summary = gr.Markdown("Enter texts and click Analyze Batch")
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1346 |
|
1347 |
+
with gr.Row():
|
1348 |
+
batch_results_table = gr.DataFrame(
|
1349 |
+
label="Detailed Results",
|
1350 |
+
interactive=False
|
1351 |
+
)
|
1352 |
|
1353 |
+
with gr.Row():
|
1354 |
+
batch_summary_plot = gr.Plot(label="Sentiment Summary")
|
1355 |
+
batch_confidence_plot = gr.Plot(label="Confidence Distribution")
|
1356 |
+
|
1357 |
+
with gr.Tab("📈 History & Analytics"):
|
1358 |
+
with gr.Row():
|
1359 |
+
with gr.Column():
|
1360 |
+
gr.Markdown("### 📊 Statistics")
|
1361 |
+
stats_btn = gr.Button("📈 Get Statistics")
|
1362 |
+
recent_btn = gr.Button("🕒 Recent Analyses")
|
1363 |
+
stats_output = gr.Markdown("Click 'Get Statistics' to view analysis history")
|
1364 |
+
|
1365 |
+
with gr.Column():
|
1366 |
+
gr.Markdown("### 🔍 Filter History")
|
1367 |
+
with gr.Row():
|
1368 |
+
sentiment_filter = gr.Dropdown(
|
1369 |
+
choices=["All", "Positive", "Negative", "Neutral"],
|
1370 |
+
value="All",
|
1371 |
+
label="Filter by Sentiment"
|
1372 |
+
)
|
1373 |
+
language_filter = gr.Dropdown(
|
1374 |
+
choices=["All", "English", "Chinese", "Spanish", "French", "German", "Swedish"],
|
1375 |
+
value="All",
|
1376 |
+
label="Filter by Language"
|
1377 |
+
)
|
1378 |
+
|
1379 |
+
confidence_filter = gr.Slider(
|
1380 |
+
minimum=0.0,
|
1381 |
+
maximum=1.0,
|
1382 |
+
value=0.0,
|
1383 |
+
step=0.1,
|
1384 |
+
label="Minimum Confidence"
|
1385 |
+
)
|
1386 |
+
|
1387 |
+
filter_btn = gr.Button("🔍 Filter History")
|
1388 |
|
1389 |
+
with gr.Row():
|
1390 |
+
dashboard_btn = gr.Button("📊 View Dashboard")
|
1391 |
+
clear_btn = gr.Button("🗑️ Clear History", variant="stop")
|
|
|
|
|
1392 |
|
1393 |
+
with gr.Row():
|
1394 |
+
export_csv_btn = gr.Button("📄 Export CSV")
|
1395 |
+
export_excel_btn = gr.Button("📊 Export Excel")
|
|
|
1396 |
|
1397 |
+
dashboard_plot = gr.Plot(label="Analytics Dashboard")
|
|
|
|
|
|
|
1398 |
|
1399 |
+
with gr.Row():
|
1400 |
+
filtered_results = gr.Markdown("Use filters to view specific entries")
|
1401 |
+
filtered_table = gr.DataFrame(label="Filtered History", interactive=False)
|
|
|
1402 |
|
1403 |
+
csv_file = gr.File(label="Download CSV Report")
|
1404 |
+
excel_file = gr.File(label="Download Excel Report")
|
1405 |
+
history_status = gr.Textbox(label="Status", interactive=False)
|
1406 |
+
|
1407 |
+
# Event handlers
|
1408 |
+
|
1409 |
+
# Single Analysis
|
1410 |
+
analyze_btn.click(
|
1411 |
+
analyze_single_text,
|
1412 |
+
inputs=[text_input, language_select, theme_select, clean_text, remove_punct, remove_nums],
|
1413 |
+
outputs=[result_info, gauge_plot, bars_plot]
|
1414 |
+
)
|
1415 |
+
|
1416 |
+
# Batch Analysis
|
1417 |
+
batch_analyze_btn.click(
|
1418 |
+
analyze_batch_texts,
|
1419 |
+
inputs=[batch_input, batch_language, batch_theme, batch_clean, batch_remove_punct, batch_remove_nums],
|
1420 |
+
outputs=[batch_summary, batch_results_table, batch_summary_plot, batch_confidence_plot]
|
1421 |
+
)
|
1422 |
+
|
1423 |
+
# Advanced Analysis
|
1424 |
+
advanced_analyze_btn.click(
|
1425 |
+
analyze_advanced_text,
|
1426 |
+
inputs=[advanced_input, advanced_language, advanced_theme, use_lime, use_attention, lime_features],
|
1427 |
+
outputs=[advanced_result_info, advanced_gauge_plot, advanced_bars_plot, lime_plot, attention_plot]
|
1428 |
+
)
|
1429 |
+
|
1430 |
+
# History & Analytics
|
1431 |
+
stats_btn.click(
|
1432 |
+
get_history_stats,
|
1433 |
+
outputs=stats_output
|
1434 |
+
)
|
1435 |
+
|
1436 |
+
recent_btn.click(
|
1437 |
+
get_recent_analyses,
|
1438 |
+
outputs=stats_output
|
1439 |
+
)
|
1440 |
+
|
1441 |
+
filter_btn.click(
|
1442 |
+
filter_history_display,
|
1443 |
+
inputs=[sentiment_filter, language_filter, confidence_filter],
|
1444 |
+
outputs=[filtered_results, filtered_table]
|
1445 |
+
)
|
1446 |
+
|
1447 |
+
dashboard_btn.click(
|
1448 |
+
plot_history_dashboard,
|
1449 |
+
outputs=[dashboard_plot, history_status]
|
1450 |
+
)
|
1451 |
+
|
1452 |
+
export_csv_btn.click(
|
1453 |
+
export_history_csv,
|
1454 |
+
outputs=[csv_file, history_status]
|
1455 |
+
)
|
1456 |
+
|
1457 |
+
export_excel_btn.click(
|
1458 |
+
export_history_excel,
|
1459 |
+
outputs=[excel_file, history_status]
|
1460 |
+
)
|
1461 |
|
1462 |
+
clear_btn.click(
|
1463 |
+
clear_all_history,
|
1464 |
+
outputs=history_status
|
1465 |
+
)
|
1466 |
|
|
|
1467 |
if __name__ == "__main__":
|
1468 |
+
demo.launch(share=True)
|
|
|
|
|
|
|
|
|
|
|
|
|
|