Spaces:
Runtime error
Runtime error
import sys | |
import os | |
sys.path.append(os.path.dirname(os.path.dirname(os.path.abspath(__file__)))) | |
import json | |
from pathlib import Path | |
from tqdm import tqdm | |
from utils.openai_access import call_chatgpt | |
from utils.mpr import MultipleProcessRunnerSimplifier | |
from utils.generate_protein_prompt import generate_prompt | |
qa_data = None | |
def _load_qa_data(prompt_path): | |
global qa_data | |
if qa_data is None: | |
qa_data = {} | |
with open(prompt_path, 'r') as f: | |
for line in f: | |
if line.strip(): | |
item = json.loads(line.strip()) | |
qa_data[item['index']] = item | |
return qa_data | |
def process_single_qa(process_id, idx, qa_index, writer, save_dir): | |
"""处理单个QA对并生成答案""" | |
try: | |
qa_item = qa_data[qa_index] | |
protein_id = qa_item['protein_id'] | |
prompt = qa_item['prompt'] | |
question = qa_item['question'] | |
ground_truth = qa_item['ground_truth'] | |
# 调用LLM生成答案 | |
llm_response = call_chatgpt(prompt) | |
# 构建结果数据 | |
result = { | |
'protein_id': protein_id, | |
'index': qa_index, | |
'question': question, | |
'ground_truth': ground_truth, | |
'llm_answer': llm_response | |
} | |
# 保存文件,文件名使用protein_id和index | |
save_path = os.path.join(save_dir, f"{protein_id}_{qa_index}.json") | |
with open(save_path, 'w') as f: | |
json.dump(result, f, indent=2, ensure_ascii=False) | |
except Exception as e: | |
print(f"Error processing QA index {qa_index}: {str(e)}") | |
def get_missing_qa_indices(save_dir): | |
"""检查哪些QA索引尚未成功生成数据""" | |
# 获取所有应该生成的qa索引 | |
all_qa_indices = list(qa_data.keys()) | |
# 存储问题qa索引(包括空文件和未生成的文件) | |
problem_qa_indices = set() | |
# 检查每个应该存在的qa索引 | |
for qa_index in tqdm(all_qa_indices, desc="检查QA数据文件"): | |
protein_id = qa_data[qa_index]['protein_id'] | |
json_file = Path(save_dir) / f"{protein_id}_{qa_index}.json" | |
# 如果文件不存在,加入问题列表 | |
if not json_file.exists(): | |
problem_qa_indices.add(qa_index) | |
continue | |
# 检查文件内容 | |
try: | |
with open(json_file, 'r') as f: | |
data = json.load(f) | |
# 检查文件内容是否为空或缺少必要字段 | |
if (data is None or len(data) == 0 or | |
'llm_answer' not in data or | |
data.get('llm_answer') is None or | |
data.get('llm_answer') == ''): | |
problem_qa_indices.add(qa_index) | |
json_file.unlink() # 删除空文件或不完整文件 | |
except (json.JSONDecodeError, Exception) as e: | |
# 如果JSON解析失败,也认为是问题文件 | |
problem_qa_indices.add(qa_index) | |
try: | |
json_file.unlink() # 删除损坏的文件 | |
except: | |
pass | |
return problem_qa_indices | |
def main(): | |
import argparse | |
parser = argparse.ArgumentParser() | |
parser.add_argument("--prompt_path", type=str, | |
default="data/processed_data/prompts@clean_test.jsonl", | |
help="Path to the JSONL file containing QA prompts") | |
parser.add_argument("--n_process", type=int, default=64, | |
help="Number of parallel processes") | |
parser.add_argument("--save_dir", type=str, | |
default="data/clean_test_results_top2", | |
help="Directory to save results") | |
parser.add_argument("--max_iterations", type=int, default=3, | |
help="Maximum number of iterations to try generating all QA pairs") | |
args = parser.parse_args() | |
# 创建保存目录 | |
os.makedirs(args.save_dir, exist_ok=True) | |
# 加载QA数据 | |
_load_qa_data(args.prompt_path) | |
print(f"已加载 {len(qa_data)} 个QA对") | |
# 循环检查和生成,直到所有QA对都已生成或达到最大迭代次数 | |
iteration = 0 | |
while iteration < args.max_iterations: | |
iteration += 1 | |
print(f"\n开始第 {iteration} 轮检查和生成") | |
# 获取缺失的QA索引 | |
missing_qa_indices = get_missing_qa_indices(args.save_dir) | |
# 如果没有缺失的QA索引,则完成 | |
if not missing_qa_indices: | |
print("所有QA数据已成功生成!") | |
break | |
print(f"发现 {len(missing_qa_indices)} 个缺失的QA数据,准备生成") | |
# 将缺失的QA索引列表转换为列表 | |
missing_qa_indices_list = sorted(list(missing_qa_indices)) | |
# 保存当前缺失的QA索引列表,用于记录 | |
missing_ids_file = Path(args.save_dir) / f"missing_qa_indices_iteration_{iteration}.txt" | |
with open(missing_ids_file, 'w') as f: | |
for qa_index in missing_qa_indices_list: | |
protein_id = qa_data[qa_index]['protein_id'] | |
f.write(f"{protein_id}_{qa_index}\n") | |
# 使用多进程处理生成缺失的QA数据 | |
mprs = MultipleProcessRunnerSimplifier( | |
data=missing_qa_indices_list, | |
do=lambda process_id, idx, qa_index, writer: process_single_qa(process_id, idx, qa_index, writer, args.save_dir), | |
n_process=args.n_process, | |
split_strategy="static" | |
) | |
mprs.run() | |
print(f"第 {iteration} 轮生成完成") | |
# 最后检查一次 | |
final_missing_indices = get_missing_qa_indices(args.save_dir) | |
if final_missing_indices: | |
print(f"经过 {iteration} 轮生成后,仍有 {len(final_missing_indices)} 个QA数据未成功生成") | |
# 保存最终缺失的QA索引列表 | |
final_missing_ids_file = Path(args.save_dir) / "final_missing_qa_indices.txt" | |
with open(final_missing_ids_file, 'w') as f: | |
for qa_index in sorted(final_missing_indices): | |
protein_id = qa_data[qa_index]['protein_id'] | |
f.write(f"{protein_id}_{qa_index}\n") | |
print(f"最终缺失的QA索引已保存到: {final_missing_ids_file}") | |
else: | |
print(f"经过 {iteration} 轮生成,所有QA数据已成功生成!") | |
if __name__ == "__main__": | |
main() | |