# Imports | |
from transformers import AutoModelForSeq2SeqLM, AutoTokenizer | |
import fasttext | |
# Model (Pipeline) class | |
class TranslateFromAny2XModel: | |
def __init__(self, nllb_model_path: str, fasttext_model_path: str, target_language="eng_Latn"): | |
"""Initialize the model with paths for NLLB and FastText NLLB LID models.""" | |
self.nllb_model_path = nllb_model_path | |
self.fasttext_model_path = fasttext_model_path | |
self.target_language = target_language | |
# Load NLLB model and tokenizer | |
self.model = AutoModelForSeq2SeqLM.from_pretrained(nllb_model_path) | |
self.tokenizer = AutoTokenizer.from_pretrained(nllb_model_path) | |
# Load FastText language identification model | |
self.fasttext_model = fasttext.load_model(fasttext_model_path) | |
def generate(self, prompt: str) -> str: | |
"""Translates the input prompt to target_language using the NLLB model and source language detection using fastText LID model.""" | |
self.tokenizer.src_lang = self.fasttext_model.predict(prompt)[0][0].replace("__label__", "") | |
inputs = self.tokenizer(prompt, return_tensors="pt") | |
output_tokens = self.model.generate(**inputs, forced_bos_token_id=self.tokenizer.convert_tokens_to_ids(self.target_language))[0] | |
output = self.tokenizer.decode(output_tokens, skip_special_tokens=True) | |
return output | |