File size: 2,476 Bytes
9abe824
5d0faac
 
9abe824
5d0faac
 
9abe824
5d0faac
 
 
 
9abe824
5d0faac
 
 
 
 
 
 
 
 
 
 
 
 
9abe824
 
5d0faac
 
 
 
 
 
 
 
 
 
9abe824
5d0faac
 
 
 
 
03c4043
5d0faac
 
 
 
9abe824
5d0faac
 
 
 
9abe824
5d0faac
 
9abe824
5d0faac
 
 
 
 
 
9abe824
5d0faac
9abe824
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
import gradio as gr
from transformers import AutoModelForCausalLM, AutoTokenizer
import torch

# ๋ชจ๋ธ ๋กœ๋“œ
MODEL_NAME = "ewhk9887/deepseek-cokoder"

device = "cuda" if torch.cuda.is_available() else "cpu"
model = AutoModelForCausalLM.from_pretrained(MODEL_NAME, torch_dtype=torch.float16 if device == "cuda" else torch.float32)
model.to(device)
tokenizer = AutoTokenizer.from_pretrained(MODEL_NAME)

# ์ฝ”๋“œ ๋ฆฌ๋ทฐ ์ƒ์„ฑ ํ•จ์ˆ˜
def generate_code_review(user_input, system_message, max_tokens, temperature, top_p):
    """
    ์‚ฌ์šฉ์ž ์ž…๋ ฅ๊ณผ ์‹œ์Šคํ…œ ๋ฉ”์‹œ์ง€๋ฅผ ๊ธฐ๋ฐ˜์œผ๋กœ AI ์ฝ”๋“œ ๋ฆฌ๋ทฐ ์ƒ์„ฑ.
    """
    # ๋ฉ”์‹œ์ง€ ํฌ๋งท ์ƒ์„ฑ
    prompt = f"{system_message}\n\nCode:\n{user_input}\n\nReview:"
    inputs = tokenizer(prompt, return_tensors="pt").to(device)
    
    # ๋ชจ๋ธ ์ถœ๋ ฅ ์ƒ์„ฑ
    outputs = model.generate(
        inputs.input_ids,
        max_new_tokens=max_tokens,
        temperature=temperature,
        top_p=top_p,
        repetition_penalty=1.1,
        pad_token_id=tokenizer.eos_token_id
    )
    review = tokenizer.decode(outputs[0], skip_special_tokens=True)
    return review

# Gradio ์ธํ„ฐํŽ˜์ด์Šค ์ƒ์„ฑ
with gr.Blocks() as demo:
    gr.Markdown("# DeepSeek Code Review Assistant")
    gr.Markdown("AI๊ฐ€ ์ฝ”๋“œ์— ๋Œ€ํ•œ ๋ฆฌ๋ทฐ๋ฅผ ์ œ๊ณตํ•ฉ๋‹ˆ๋‹ค. ์ฝ”๋“œ๋ฅผ ์ž…๋ ฅํ•˜๊ณ  ๋ฆฌ๋ทฐ๋ฅผ ํ™•์ธํ•˜์„ธ์š”!")

    with gr.Row():
        with gr.Column():
            code_input = gr.Textbox(label="์ฝ”๋“œ ์ž…๋ ฅ", placeholder="๋ฆฌ๋ทฐ๋ฅผ ์›ํ•˜๋Š” ์ฝ”๋“œ๋ฅผ ์ž…๋ ฅํ•˜์„ธ์š”...", lines=10)
            system_message = gr.Textbox(
                label="์‹œ์Šคํ…œ ๋ฉ”์‹œ์ง€",
                value="์œ ์ €์˜ ์ฝ”๋“œ์—์„œ ์˜ค๋ฅ˜์™€ ๊ฐœ์„ ์ ์„ ํ•œ๊ตญ์–ด๋กœ ๋ฆฌ๋ทฐํ•˜์„ธ์š”.",
                lines=3,
            )
        with gr.Column():
            review_output = gr.Textbox(label="์ฝ”๋“œ ๋ฆฌ๋ทฐ ๊ฒฐ๊ณผ", lines=10)

    # ์ถ”๊ฐ€ ์˜ต์…˜
    max_tokens = gr.Slider(label="Max Tokens", minimum=10, maximum=512, value=256, step=10)
    temperature = gr.Slider(label="Temperature", minimum=0.1, maximum=1.0, value=0.7, step=0.1)
    top_p = gr.Slider(label="Top-p", minimum=0.1, maximum=1.0, value=0.9, step=0.05)

    # ๋ฒ„ํŠผ
    generate_button = gr.Button("๋ฆฌ๋ทฐ ์ƒ์„ฑ")

    # ์ด๋ฒคํŠธ ์—ฐ๊ฒฐ
    generate_button.click(
        fn=generate_code_review,
        inputs=[code_input, system_message, max_tokens, temperature, top_p],
        outputs=review_output,
    )

# ์‹คํ–‰
if __name__ == "__main__":
    demo.launch()