File size: 17,173 Bytes
8e3abc5
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
"""NEAT Genome implementation.

This module implements the core NEAT genome structure and operations.
Each genome represents a neural network with nodes (neurons) and connections (synapses).
The genome can be mutated to evolve the network structure and weights over time.
"""

from dataclasses import dataclass
import jax.numpy as jnp
import jax.random as jrandom
from typing import Dict, List, Tuple, Optional
import time
import random
import numpy as np

@dataclass
class NodeGene:
    """Node gene containing activation function and type.
    
    Attributes:
        node_id: Unique identifier for this node
        node_type: Type of node ('input', 'hidden', 'recurrent', or 'output')
        activation: Activation function ('tanh', 'relu', 'sigmoid', or 'linear')
    """
    node_id: int
    node_type: str  # 'input', 'hidden', 'recurrent', or 'output'
    activation: str  # 'tanh', 'relu', 'sigmoid', or 'linear'

@dataclass
class ConnectionGene:
    """Connection gene containing connection properties.
    
    Attributes:
        source: ID of source node
        target: ID of target node
        weight: Connection weight
        enabled: Whether connection is enabled
        innovation: Unique innovation number for this connection
    """
    source: int
    target: int
    weight: float
    enabled: bool = True
    innovation: int = 0

class Genome:
    """NEAT Genome implementation.
    
    A genome represents a neural network as a collection of node and connection genes.
    The network topology can be modified through mutation operations.
    
    Attributes:
        input_size: Number of input nodes
        output_size: Number of output nodes
        node_genes: Dictionary mapping node IDs to NodeGene objects
        connection_genes: List of ConnectionGene objects
        key: Random key for reproducible randomness
        innovation_number: Counter for assigning unique innovation numbers
    """
    
    def __init__(self, input_size: int, output_size: int):
        """Initialize genome with specified number of inputs and outputs.
        
        Args:
            input_size: Number of input nodes
            output_size: Number of output nodes (must be 3 for volleyball)
        """
        self.input_size = input_size
        self.output_size = output_size
        self.node_genes: Dict[int, NodeGene] = {}
        self.connection_genes: List[ConnectionGene] = []
        
        # Initialize random key
        timestamp = int(time.time() * 1000)
        self.key = jrandom.PRNGKey(hash((input_size, output_size, timestamp)) % (2**32))
        
        # Counter for assigning unique innovation numbers
        self.innovation_number = 0
        
        # Initialize minimal network structure
        self._init_minimal()
    
    def _init_minimal(self):
        """Initialize minimal feed-forward network structure.
        
        Network structure:
        - Input nodes [0-7]: Game state inputs
        - Hidden layer 1 [8-15]: First processing layer (8 nodes)
        - Hidden layer 2 [16-23]: Second processing layer (8 nodes)
        - Output nodes [24-26]: Action outputs (left, right, jump)
        
        Using larger initial weights for faster learning:
        - Input->Hidden1: N(0, 2.0) for strong initial responses
        - Hidden1->Hidden2: N(0, 2.0) for feature processing
        - Hidden2->Output: N(0, 4.0) for decisive actions
        """
        # Create input nodes (0-7)
        for i in range(8):  # Only 8 inputs used
            self.node_genes[i] = NodeGene(
                node_id=i,
                node_type='input',
                activation='linear'  # Input nodes are always linear
            )
        
        # Create first hidden layer (8-15)
        hidden1_size = 8
        hidden1_start = 8  # Right after inputs
        for i in range(hidden1_size):
            node_id = hidden1_start + i
            self.node_genes[node_id] = NodeGene(
                node_id=node_id,
                node_type='hidden',
                activation='relu'  # ReLU for faster learning
            )
            
            # Connect all inputs to this hidden node
            for input_id in range(8):
                weight = float(jrandom.normal(self.key) * 2.0)
                self.connection_genes.append(ConnectionGene(
                    source=input_id,
                    target=node_id,
                    weight=weight,
                    enabled=True,
                    innovation=self.innovation_number
                ))
                self.innovation_number += 1
        
        # Create second hidden layer (16-23)
        hidden2_size = 8
        hidden2_start = hidden1_start + hidden1_size
        for i in range(hidden2_size):
            node_id = hidden2_start + i
            self.node_genes[node_id] = NodeGene(
                node_id=node_id,
                node_type='hidden',
                activation='relu'  # ReLU for faster learning
            )
            
            # Connect all hidden1 nodes to this hidden2 node
            for h1_id in range(hidden1_start, hidden1_start + hidden1_size):
                weight = float(jrandom.normal(self.key) * 2.0)
                self.connection_genes.append(ConnectionGene(
                    source=h1_id,
                    target=node_id,
                    weight=weight,
                    enabled=True,
                    innovation=self.innovation_number
                ))
                self.innovation_number += 1
        
        # Create output nodes (24-26)
        output_start = hidden2_start + hidden2_size
        for i in range(self.output_size):
            node_id = output_start + i
            self.node_genes[node_id] = NodeGene(
                node_id=node_id,
                node_type='output',
                activation='tanh'  # tanh for [-1,1] outputs
            )
            
            # Connect all hidden2 nodes to this output
            for h2_id in range(hidden2_start, hidden2_start + hidden2_size):
                weight = float(jrandom.normal(self.key) * 4.0)  # Larger weights for outputs
                self.connection_genes.append(ConnectionGene(
                    source=h2_id,
                    target=node_id,
                    weight=weight,
                    enabled=True,
                    innovation=self.innovation_number
                ))
                self.innovation_number += 1
    
    def mutate(self, config: Dict):
        """Mutate the genome by modifying weights and network structure.
        
        Args:
            config: Dictionary containing mutation parameters:
                - weight_mutation_rate: Probability of mutating each weight
                - weight_mutation_power: Standard deviation for weight mutations
                - add_node_rate: Probability of adding a new node
                - add_connection_rate: Probability of adding a new connection
        """
        # Mutate connection weights
        for conn in self.connection_genes:
            if jrandom.uniform(self.key) < config['weight_mutation_rate']:
                # Get new random key
                self.key, subkey = jrandom.split(self.key)
                # Add random value from normal distribution
                conn.weight += float(jrandom.normal(subkey) * config['weight_mutation_power'])
        
        # Add new nodes (disabled for now since we're using fixed topology)
        if config['add_node_rate'] > 0:
            if jrandom.uniform(self.key) < config['add_node_rate']:
                self._add_node()
        
        # Add new connections (disabled for now)
        if config['add_connection_rate'] > 0:
            if jrandom.uniform(self.key) < config['add_connection_rate']:
                self._add_connection()
    
    def _add_node(self):
        """Add a new node by splitting an existing connection."""
        if not self.connection_genes:
            return
            
        # Choose a random connection to split
        conn_to_split = np.random.choice(self.connection_genes)
        conn_to_split.enabled = False
        
        # Create new node
        new_node_id = max(self.node_genes.keys()) + 1
        self.node_genes[new_node_id] = NodeGene(
            node_id=new_node_id,
            node_type='hidden',
            activation='relu'
        )
        
        # Create two new connections
        self.connection_genes.extend([
            ConnectionGene(
                source=conn_to_split.source,
                target=new_node_id,
                weight=1.0,
                enabled=True,
                innovation=self.innovation_number
            ),
            ConnectionGene(
                source=new_node_id,
                target=conn_to_split.target,
                weight=conn_to_split.weight,
                enabled=True,
                innovation=self.innovation_number + 1
            )
        ])
        self.innovation_number += 2
    
    def _add_connection(self):
        """Add a new connection between two unconnected nodes."""
        # Get list of all possible connections
        existing_connections = {(c.source, c.target) for c in self.connection_genes}
        possible_connections = []
        
        for source in self.node_genes:
            for target in self.node_genes:
                # Skip if connection already exists
                if (source, target) in existing_connections:
                    continue
                    
                # Skip if would create cycle (except recurrent)
                if self.node_genes[source].node_type != 'recurrent' and \
                   self.would_create_cycle(source, target):
                    continue
                    
                possible_connections.append((source, target))
        
        if possible_connections:
            # Choose random connection
            source, target = random.choice(possible_connections)
            
            # Create new connection
            weight = float(jrandom.normal(self.key) * 1.0)
            self.connection_genes.append(ConnectionGene(
                source=source,
                target=target,
                weight=weight,
                enabled=True,
                innovation=self.innovation_number
            ))
            self.innovation_number += 1
    
    def would_create_cycle(self, source: int, target: int) -> bool:
        """Check if adding connection would create cycle in network.
        
        Args:
            source: Source node ID
            target: Target node ID
            
        Returns:
            True if connection would create cycle, False otherwise
        """
        # Skip cycle detection for recurrent connections
        if self.node_genes[source].node_type == 'recurrent' or \
           self.node_genes[target].node_type == 'recurrent':
            return False
            
        # Do depth-first search from target to see if we can reach source
        visited = set()
        
        def dfs(node: int) -> bool:
            if node == source:
                return True
            if node in visited:
                return False
                
            visited.add(node)
            for conn in self.connection_genes:
                if conn.source == node and conn.enabled:
                    if dfs(conn.target):
                        return True
            return False
        
        return dfs(target)
    
    def add_node_between(self, source: int, target: int):
        """Add a new node between two nodes, splitting an existing connection.
        
        Args:
            source: Source node ID
            target: Target node ID
        """
        # Find and disable the existing connection
        for conn in self.connection_genes:
            if conn.source == source and conn.target == target and conn.enabled:
                conn.enabled = False
                
                # Create new node
                new_id = max(self.node_genes.keys()) + 1
                self.node_genes[new_id] = NodeGene(
                    node_id=new_id,
                    node_type='hidden',
                    activation='relu'
                )
                
                # Create two new connections
                self.connection_genes.extend([
                    ConnectionGene(
                        source=source,
                        target=new_id,
                        weight=1.0,
                        enabled=True,
                        innovation=self.innovation_number
                    ),
                    ConnectionGene(
                        source=new_id,
                        target=target,
                        weight=conn.weight,
                        enabled=True,
                        innovation=self.innovation_number + 1
                    )
                ])
                self.innovation_number += 2
                break
    
    def add_connection(self, source: int, target: int, weight: Optional[float] = None) -> bool:
        """Add a new connection between two nodes.
        
        Args:
            source: Source node ID
            target: Target node ID
            weight: Optional connection weight. If None, a random weight is generated.
            
        Returns:
            True if connection was added, False if invalid or already exists
        """
        # Check if connection already exists
        if any(c.source == source and c.target == target for c in self.connection_genes):
            return False
            
        # Validate nodes exist
        if source not in self.node_genes or target not in self.node_genes:
            return False
            
        # Ensure feed-forward (no cycles)
        if source >= target:  # Simple way to ensure feed-forward
            return False
            
        # Generate random weight if not provided
        if weight is None:
            weight = float(jrandom.normal(self.key) * 1.0)
            
        # Add new connection
        self.connection_genes.append(ConnectionGene(
            source=source,
            target=target,
            weight=weight,
            enabled=True,
            innovation=self.innovation_number
        ))
        self.innovation_number += 1
        return True
    
    def crossover(self, other: 'Genome', key: jnp.ndarray) -> 'Genome':
        """Perform crossover between two genomes.
        
        Args:
            other: Other parent genome
            key: JAX PRNG key
            
        Returns:
            Child genome
        """
        # Create child genome
        child = Genome(self.input_size, self.output_size)
        
        # Inherit node genes
        for node_id in self.node_genes:
            if node_id in other.node_genes:
                # Inherit randomly from either parent
                if jrandom.uniform(key) < 0.5:
                    child.node_genes[node_id] = self.node_genes[node_id]
                else:
                    child.node_genes[node_id] = other.node_genes[node_id]
            else:
                # Inherit from fitter parent
                child.node_genes[node_id] = self.node_genes[node_id]
        
        # Inherit connection genes
        for conn in self.connection_genes:
            if conn.innovation in [c.innovation for c in other.connection_genes]:
                # Inherit randomly from either parent
                other_conn = next(c for c in other.connection_genes if c.innovation == conn.innovation)
                if jrandom.uniform(key) < 0.5:
                    child.connection_genes.append(ConnectionGene(
                        source=conn.source,
                        target=conn.target,
                        weight=conn.weight,
                        enabled=conn.enabled,
                        innovation=conn.innovation
                    ))
                else:
                    child.connection_genes.append(ConnectionGene(
                        source=other_conn.source,
                        target=other_conn.target,
                        weight=other_conn.weight,
                        enabled=other_conn.enabled,
                        innovation=other_conn.innovation
                    ))
            else:
                # Inherit from fitter parent
                child.connection_genes.append(ConnectionGene(
                    source=conn.source,
                    target=conn.target,
                    weight=conn.weight,
                    enabled=conn.enabled,
                    innovation=conn.innovation
                ))
        
        return child
        
    def clone(self) -> 'Genome':
        """Create a copy of this genome.
        
        Returns:
            Copy of genome
        """
        clone = Genome(self.input_size, self.output_size)
        clone.node_genes = self.node_genes.copy()
        clone.connection_genes = [ConnectionGene(**conn.__dict__) for conn in self.connection_genes]
        return clone

    @property
    def n_nodes(self) -> int:
        """Get total number of nodes in the genome."""
        return len(self.node_genes)