Upload neat\network.py with huggingface_hub
Browse files- neat//network.py +452 -0
neat//network.py
ADDED
@@ -0,0 +1,452 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
"""Neural network implementation for BackpropNEAT."""
|
2 |
+
|
3 |
+
import jax
|
4 |
+
import jax.numpy as jnp
|
5 |
+
import numpy as np
|
6 |
+
from typing import Dict, List, Optional, Tuple, Union
|
7 |
+
from .genome import Genome
|
8 |
+
import copy
|
9 |
+
import random
|
10 |
+
|
11 |
+
class Network:
|
12 |
+
"""Neural network for NEAT implementation.
|
13 |
+
Implements a strictly feed-forward network following original NEAT principles:
|
14 |
+
1. Start minimal - direct input-output connections only
|
15 |
+
2. Complexify gradually through structural mutations
|
16 |
+
3. Protect innovation through speciation
|
17 |
+
4. No recurrent connections (as per requirements)
|
18 |
+
"""
|
19 |
+
def __init__(self, genome: Genome):
|
20 |
+
"""Initialize network from genome."""
|
21 |
+
# Store genome and sizes
|
22 |
+
self.genome = genome
|
23 |
+
|
24 |
+
# Verify genome sizes match volleyball requirements
|
25 |
+
if genome.input_size != 12 or genome.output_size != 3:
|
26 |
+
print(f"Warning: Genome size mismatch. Expected 12 inputs, 3 outputs. Got {genome.input_size} inputs, {genome.output_size} outputs")
|
27 |
+
genome.input_size = 12
|
28 |
+
genome.output_size = 3
|
29 |
+
|
30 |
+
self.input_size = 12 # Fixed for volleyball
|
31 |
+
self.output_size = 3 # Fixed for volleyball
|
32 |
+
|
33 |
+
# Deep copy to avoid shared references
|
34 |
+
self.node_genes = {}
|
35 |
+
self.connection_genes = []
|
36 |
+
|
37 |
+
# Create input nodes (0 to 11)
|
38 |
+
for i in range(12):
|
39 |
+
self.node_genes[i] = NodeGene(i, 'input', 'linear')
|
40 |
+
|
41 |
+
# Create bias node (12)
|
42 |
+
self.node_genes[12] = NodeGene(12, 'bias', 'linear')
|
43 |
+
|
44 |
+
# Create output nodes (13, 14, 15)
|
45 |
+
for i in range(3):
|
46 |
+
node_id = 13 + i
|
47 |
+
self.node_genes[node_id] = NodeGene(node_id, 'output', 'sigmoid')
|
48 |
+
|
49 |
+
# Connect to bias with appropriate weight based on action type
|
50 |
+
if i < 2: # Left/Right actions: encourage movement
|
51 |
+
self.connection_genes.append(
|
52 |
+
ConnectionGene(12, node_id, random.uniform(0.0, 1.0), True)
|
53 |
+
)
|
54 |
+
else: # Jump action: neutral bias
|
55 |
+
self.connection_genes.append(
|
56 |
+
ConnectionGene(12, node_id, random.uniform(-0.5, 0.5), True)
|
57 |
+
)
|
58 |
+
|
59 |
+
# Connect to relevant inputs with larger weights
|
60 |
+
if i == 0: # Left action: connect to ball x position and velocity
|
61 |
+
self.connection_genes.append(
|
62 |
+
ConnectionGene(0, node_id, random.uniform(0.5, 1.5), True) # ball x
|
63 |
+
)
|
64 |
+
self.connection_genes.append(
|
65 |
+
ConnectionGene(2, node_id, random.uniform(0.5, 1.5), True) # ball vx
|
66 |
+
)
|
67 |
+
elif i == 1: # Right action: connect to ball x position and velocity
|
68 |
+
self.connection_genes.append(
|
69 |
+
ConnectionGene(0, node_id, random.uniform(-1.5, -0.5), True) # ball x
|
70 |
+
)
|
71 |
+
self.connection_genes.append(
|
72 |
+
ConnectionGene(2, node_id, random.uniform(-1.5, -0.5), True) # ball vx
|
73 |
+
)
|
74 |
+
else: # Jump action: connect to ball y position and velocity
|
75 |
+
self.connection_genes.append(
|
76 |
+
ConnectionGene(1, node_id, random.uniform(-1.5, -0.5), True) # ball y
|
77 |
+
)
|
78 |
+
self.connection_genes.append(
|
79 |
+
ConnectionGene(3, node_id, random.uniform(-1.0, 0.0), True) # ball vy
|
80 |
+
)
|
81 |
+
|
82 |
+
# Copy existing nodes (if any)
|
83 |
+
for node_id, node in genome.node_genes.items():
|
84 |
+
if node_id not in self.node_genes: # Skip I/O nodes
|
85 |
+
self.node_genes[node_id] = NodeGene(
|
86 |
+
node_id,
|
87 |
+
node.node_type,
|
88 |
+
node.activation
|
89 |
+
)
|
90 |
+
|
91 |
+
# Copy connections
|
92 |
+
if genome.connection_genes:
|
93 |
+
# Clear initial connections if genome has its own
|
94 |
+
self.connection_genes = []
|
95 |
+
for conn in genome.connection_genes:
|
96 |
+
# Verify connection nodes exist
|
97 |
+
if conn.source not in self.node_genes or conn.target not in self.node_genes:
|
98 |
+
print(f"Warning: Connection {conn.source}->{conn.target} references missing nodes")
|
99 |
+
continue
|
100 |
+
self.connection_genes.append(ConnectionGene(
|
101 |
+
conn.source,
|
102 |
+
conn.target,
|
103 |
+
conn.weight,
|
104 |
+
conn.enabled
|
105 |
+
))
|
106 |
+
|
107 |
+
# Verify output connections (13, 14, 15)
|
108 |
+
for output_id in [13, 14, 15]:
|
109 |
+
has_connection = False
|
110 |
+
for conn in self.connection_genes:
|
111 |
+
if conn.enabled and conn.target == output_id:
|
112 |
+
has_connection = True
|
113 |
+
break
|
114 |
+
|
115 |
+
if not has_connection:
|
116 |
+
print(f"Adding missing connections for output {output_id}")
|
117 |
+
# Connect to bias
|
118 |
+
self.connection_genes.append(
|
119 |
+
ConnectionGene(12, output_id, random.uniform(-1.0, 1.0), True)
|
120 |
+
)
|
121 |
+
# Connect to random input
|
122 |
+
input_id = random.randint(0, 11)
|
123 |
+
self.connection_genes.append(
|
124 |
+
ConnectionGene(input_id, output_id, random.uniform(-1.0, 1.0), True)
|
125 |
+
)
|
126 |
+
|
127 |
+
# Build evaluation order
|
128 |
+
self.node_evals = {}
|
129 |
+
self._build_feed_forward_order()
|
130 |
+
|
131 |
+
# Verify all outputs are properly connected
|
132 |
+
self._verify_outputs()
|
133 |
+
|
134 |
+
def _verify_outputs(self):
|
135 |
+
"""Verify all outputs have valid connections and evaluations."""
|
136 |
+
output_ids = {13, 14, 15} # Fixed output IDs
|
137 |
+
|
138 |
+
# Check node evaluations
|
139 |
+
for output_id in output_ids:
|
140 |
+
if output_id not in self.node_evals:
|
141 |
+
print(f"Adding missing evaluation for output {output_id}")
|
142 |
+
bias_id = 12
|
143 |
+
self.node_evals[output_id] = {
|
144 |
+
'inputs': [bias_id],
|
145 |
+
'weights': [1.0],
|
146 |
+
'activation': 'sigmoid'
|
147 |
+
}
|
148 |
+
# Add connection if needed
|
149 |
+
if not any(c.target == output_id and c.enabled for c in self.connection_genes):
|
150 |
+
self.connection_genes.append(
|
151 |
+
ConnectionGene(bias_id, output_id, 1.0, True)
|
152 |
+
)
|
153 |
+
|
154 |
+
def _create_minimal_connections(self):
|
155 |
+
"""Create minimal initial connections for a new network."""
|
156 |
+
bias_id = 12
|
157 |
+
output_start = bias_id + 1
|
158 |
+
|
159 |
+
# Connect each output to bias and one random input
|
160 |
+
for i in range(self.output_size):
|
161 |
+
output_id = output_start + i
|
162 |
+
|
163 |
+
# Connect to bias
|
164 |
+
self.connection_genes.append(ConnectionGene(
|
165 |
+
bias_id, output_id,
|
166 |
+
random.uniform(-1.0, 1.0),
|
167 |
+
True
|
168 |
+
))
|
169 |
+
|
170 |
+
# Connect to random input
|
171 |
+
input_id = random.randint(0, self.input_size - 1)
|
172 |
+
self.connection_genes.append(ConnectionGene(
|
173 |
+
input_id, output_id,
|
174 |
+
random.uniform(-1.0, 1.0),
|
175 |
+
True
|
176 |
+
))
|
177 |
+
|
178 |
+
def _build_feed_forward_order(self):
|
179 |
+
"""Build evaluation order ensuring feed-forward only topology."""
|
180 |
+
try:
|
181 |
+
# Fixed node sets for volleyball
|
182 |
+
input_nodes = set(range(12)) # 0-11
|
183 |
+
bias_node = {12} # Bias node
|
184 |
+
output_nodes = {13, 14, 15} # Output nodes
|
185 |
+
|
186 |
+
# Create adjacency lists
|
187 |
+
connections = {}
|
188 |
+
for conn in self.connection_genes:
|
189 |
+
if not conn.enabled:
|
190 |
+
continue
|
191 |
+
if conn.source not in connections:
|
192 |
+
connections[conn.source] = []
|
193 |
+
connections[conn.source].append(conn.target)
|
194 |
+
|
195 |
+
# Start with inputs and bias evaluated
|
196 |
+
evaluated = input_nodes | bias_node
|
197 |
+
eval_order = []
|
198 |
+
|
199 |
+
# Helper function to check if a node can be evaluated
|
200 |
+
def can_evaluate(node_id):
|
201 |
+
if node_id in connections:
|
202 |
+
return all(dep in evaluated for dep in connections[node_id])
|
203 |
+
return True
|
204 |
+
|
205 |
+
# Keep trying to evaluate nodes until we can't anymore
|
206 |
+
while True:
|
207 |
+
ready_nodes = set()
|
208 |
+
for node_id in self.node_genes:
|
209 |
+
if node_id not in evaluated and can_evaluate(node_id):
|
210 |
+
ready_nodes.add(node_id)
|
211 |
+
|
212 |
+
if not ready_nodes:
|
213 |
+
break
|
214 |
+
|
215 |
+
# Add nodes to evaluation order
|
216 |
+
for node_id in sorted(ready_nodes):
|
217 |
+
incoming = []
|
218 |
+
incoming_weights = []
|
219 |
+
for conn in self.connection_genes:
|
220 |
+
if conn.enabled and conn.target == node_id:
|
221 |
+
incoming.append(conn.source)
|
222 |
+
incoming_weights.append(conn.weight)
|
223 |
+
|
224 |
+
if incoming: # Only add if node has inputs
|
225 |
+
self.node_evals[node_id] = {
|
226 |
+
'inputs': incoming,
|
227 |
+
'weights': incoming_weights,
|
228 |
+
'activation': self.node_genes[node_id].activation
|
229 |
+
}
|
230 |
+
eval_order.append(node_id)
|
231 |
+
|
232 |
+
evaluated.add(node_id)
|
233 |
+
|
234 |
+
# Ensure all outputs have evaluations
|
235 |
+
for output_id in output_nodes:
|
236 |
+
if output_id not in self.node_evals:
|
237 |
+
print(f"Adding default evaluation for output {output_id}")
|
238 |
+
# Connect to bias by default
|
239 |
+
self.node_evals[output_id] = {
|
240 |
+
'inputs': [12], # Bias node
|
241 |
+
'weights': [1.0],
|
242 |
+
'activation': 'sigmoid'
|
243 |
+
}
|
244 |
+
# Add connection if needed
|
245 |
+
if not any(c.target == output_id and c.enabled for c in self.connection_genes):
|
246 |
+
self.connection_genes.append(
|
247 |
+
ConnectionGene(12, output_id, 1.0, True)
|
248 |
+
)
|
249 |
+
|
250 |
+
except Exception as e:
|
251 |
+
print(f"Error in feed-forward build: {e}")
|
252 |
+
# Create minimal fallback evaluations
|
253 |
+
self.node_evals = {}
|
254 |
+
for i in range(3): # 3 outputs
|
255 |
+
output_id = 13 + i
|
256 |
+
self.node_evals[output_id] = {
|
257 |
+
'inputs': [12], # Bias node
|
258 |
+
'weights': [1.0],
|
259 |
+
'activation': 'sigmoid'
|
260 |
+
}
|
261 |
+
|
262 |
+
def forward(self, inputs: jnp.ndarray) -> jnp.ndarray:
|
263 |
+
"""Forward pass through the network."""
|
264 |
+
try:
|
265 |
+
# Only use first 8 inputs like original network
|
266 |
+
inputs = inputs[:8]
|
267 |
+
|
268 |
+
# Handle input shape
|
269 |
+
original_shape = inputs.shape
|
270 |
+
if len(inputs.shape) == 1:
|
271 |
+
inputs = inputs.reshape(1, -1)
|
272 |
+
batch_size = inputs.shape[0]
|
273 |
+
|
274 |
+
# Get max node ID for activation array
|
275 |
+
max_node_id = max(node.id for node in self.node_genes.values())
|
276 |
+
|
277 |
+
# Initialize activations array
|
278 |
+
activations = jnp.zeros((batch_size, max_node_id + 1))
|
279 |
+
|
280 |
+
# Set input values (0-7)
|
281 |
+
for i in range(8):
|
282 |
+
if i < len(inputs):
|
283 |
+
activations = activations.at[:, i].set(inputs[:, i])
|
284 |
+
else:
|
285 |
+
activations = activations.at[:, i].set(0.0)
|
286 |
+
|
287 |
+
# Initialize recurrent nodes (8-11) with previous outputs
|
288 |
+
# For now just use zeros, in the future we could store previous outputs
|
289 |
+
for i in range(8, 12):
|
290 |
+
activations = activations.at[:, i].set(0.0)
|
291 |
+
|
292 |
+
# Evaluate nodes in order (hidden then output)
|
293 |
+
for node_id, eval_info in self.node_evals.items():
|
294 |
+
try:
|
295 |
+
# Skip input and recurrent nodes
|
296 |
+
if node_id < 12:
|
297 |
+
continue
|
298 |
+
|
299 |
+
# Get weighted sum of inputs
|
300 |
+
act = jnp.zeros(batch_size)
|
301 |
+
for conn_source, conn_weight in zip(eval_info['inputs'], eval_info['weights']):
|
302 |
+
act += activations[:, conn_source] * conn_weight
|
303 |
+
|
304 |
+
# Apply activation function
|
305 |
+
if eval_info['activation'] == 'tanh':
|
306 |
+
act = jnp.tanh(act)
|
307 |
+
elif eval_info['activation'] == 'sigmoid':
|
308 |
+
act = jax.nn.sigmoid(act)
|
309 |
+
elif eval_info['activation'] == 'relu':
|
310 |
+
act = jax.nn.relu(act)
|
311 |
+
|
312 |
+
# Apply threshold like original network for output nodes
|
313 |
+
if node_id >= 20: # Output nodes
|
314 |
+
act = jnp.where(act > 0.75, 1.0, 0.0)
|
315 |
+
|
316 |
+
activations = activations.at[:, node_id].set(act)
|
317 |
+
except Exception as e:
|
318 |
+
print(f"Error at node {node_id}: {e}")
|
319 |
+
|
320 |
+
# Get output node activations
|
321 |
+
output = activations[:, -3:]
|
322 |
+
|
323 |
+
# Update recurrent nodes for next time step
|
324 |
+
# (In a real implementation, we'd need to store these)
|
325 |
+
for i in range(8, 12):
|
326 |
+
act = jnp.zeros(batch_size)
|
327 |
+
for conn_source, conn_weight in zip(eval_info['inputs'], eval_info['weights']):
|
328 |
+
if conn_source >= 20: # Only use output nodes
|
329 |
+
act += activations[:, conn_source] * conn_weight
|
330 |
+
activations = activations.at[:, i].set(jnp.tanh(act))
|
331 |
+
|
332 |
+
# Return to original shape
|
333 |
+
if len(original_shape) == 1:
|
334 |
+
output = output.reshape(-1)
|
335 |
+
|
336 |
+
return output
|
337 |
+
except Exception as e:
|
338 |
+
print(f"Error in forward pass: {e}")
|
339 |
+
return jnp.zeros(3)
|
340 |
+
|
341 |
+
def predict(self, inputs: jnp.ndarray) -> jnp.ndarray:
|
342 |
+
"""Make a prediction for the given inputs.
|
343 |
+
|
344 |
+
Args:
|
345 |
+
inputs: Input array of shape (input_size,) or (batch_size, input_size)
|
346 |
+
|
347 |
+
Returns:
|
348 |
+
Predictions of shape (3,) for single input or (batch_size, 3) for batch
|
349 |
+
"""
|
350 |
+
outputs = self.forward(inputs)
|
351 |
+
|
352 |
+
# Ensure correct output shape for volleyball (always 3 outputs)
|
353 |
+
if len(outputs.shape) == 1:
|
354 |
+
# Single input case - ensure shape (3,)
|
355 |
+
if outputs.shape[0] != 3:
|
356 |
+
print(f"Adjusting output shape from {outputs.shape} to (3,)")
|
357 |
+
return jnp.pad(outputs, (0, max(0, 3 - outputs.shape[0])))
|
358 |
+
return outputs
|
359 |
+
else:
|
360 |
+
# Batch case - ensure shape (batch_size, 3)
|
361 |
+
if outputs.shape[1] != 3:
|
362 |
+
print(f"Adjusting output shape from {outputs.shape} to (batch_size, 3)")
|
363 |
+
return jnp.pad(outputs, ((0, 0), (0, max(0, 3 - outputs.shape[1]))))
|
364 |
+
return outputs
|
365 |
+
|
366 |
+
def clone(self) -> 'Network':
|
367 |
+
"""Create a copy of this network with a cloned genome."""
|
368 |
+
return Network(self.genome.clone())
|
369 |
+
|
370 |
+
def mutate(self, config: Dict):
|
371 |
+
"""Mutate the network's genome."""
|
372 |
+
self.genome.mutate(config)
|
373 |
+
# Rebuild evaluation order after mutation
|
374 |
+
self._build_feed_forward_order()
|
375 |
+
|
376 |
+
def to_genome(self) -> Genome:
|
377 |
+
"""Convert network back to genome representation."""
|
378 |
+
genome = Genome(self.input_size, self.output_size)
|
379 |
+
genome.node_genes = copy.deepcopy(self.node_genes)
|
380 |
+
genome.connection_genes = copy.deepcopy(self.connection_genes)
|
381 |
+
return genome
|
382 |
+
|
383 |
+
class BaseNetwork:
|
384 |
+
"""Base Network class for NEAT."""
|
385 |
+
|
386 |
+
def __init__(self, n_inputs: int, n_outputs: int):
|
387 |
+
self.input_size = n_inputs
|
388 |
+
self.output_size = n_outputs
|
389 |
+
self.fitness = float('-inf')
|
390 |
+
|
391 |
+
# Initialize weights and biases with JAX
|
392 |
+
key = jax.random.PRNGKey(0)
|
393 |
+
# Use larger initial weights to encourage exploration
|
394 |
+
self.weights = jax.random.normal(key, (n_outputs, n_inputs)) * 0.5
|
395 |
+
# Add small positive bias to encourage some initial movement
|
396 |
+
self.bias = jnp.ones(n_outputs) * 0.1
|
397 |
+
|
398 |
+
def forward(self, x: jnp.ndarray) -> jnp.ndarray:
|
399 |
+
"""Forward pass through the network."""
|
400 |
+
if x.ndim > 1:
|
401 |
+
# Batched input
|
402 |
+
h = jnp.dot(x, self.weights.T) + self.bias[None, :]
|
403 |
+
else:
|
404 |
+
# Single input
|
405 |
+
h = jnp.dot(x, self.weights.T) + self.bias
|
406 |
+
return jnp.tanh(h)
|
407 |
+
|
408 |
+
def get_params(self) -> Tuple[jnp.ndarray, jnp.ndarray]:
|
409 |
+
"""Get network parameters."""
|
410 |
+
return self.weights, self.bias
|
411 |
+
|
412 |
+
def set_params(self, params: Tuple[jnp.ndarray, jnp.ndarray]):
|
413 |
+
"""Set network parameters."""
|
414 |
+
self.weights, self.bias = params
|
415 |
+
|
416 |
+
def get_weights_numpy(self) -> np.ndarray:
|
417 |
+
"""Get weights as numpy array for visualization."""
|
418 |
+
return np.array(self.weights)
|
419 |
+
|
420 |
+
class NodeGene:
|
421 |
+
"""Node gene containing node information."""
|
422 |
+
def __init__(self, node_id: int, node_type: str, activation: str = 'tanh'):
|
423 |
+
"""Initialize node gene.
|
424 |
+
|
425 |
+
Args:
|
426 |
+
node_id: Node ID
|
427 |
+
node_type: Type of node ('input', 'hidden', or 'output')
|
428 |
+
activation: Activation function ('tanh', 'sigmoid', or 'relu')
|
429 |
+
"""
|
430 |
+
self.id = node_id
|
431 |
+
self.type = node_type
|
432 |
+
self.activation = activation
|
433 |
+
# Initialize with larger random bias for hidden/output nodes
|
434 |
+
if node_type in ['hidden', 'output']:
|
435 |
+
key = jax.random.PRNGKey(node_id) # Use node_id as seed for reproducibility
|
436 |
+
self.bias = jax.random.normal(key, ()) * 0.5 # Increased from 0.1
|
437 |
+
else:
|
438 |
+
self.bias = 0.0 # No bias for input nodes
|
439 |
+
|
440 |
+
class ConnectionGene:
|
441 |
+
"""Gene representing a connection between nodes."""
|
442 |
+
def __init__(self, source: int, target: int, weight: float = None, enabled: bool = True):
|
443 |
+
self.source = source
|
444 |
+
self.target = target
|
445 |
+
# Initialize with larger weights if not provided
|
446 |
+
if weight is None:
|
447 |
+
key = jax.random.PRNGKey(hash((source, target)) % 2**32)
|
448 |
+
self.weight = jax.random.uniform(key, (), minval=-2.0, maxval=2.0)
|
449 |
+
else:
|
450 |
+
self.weight = weight
|
451 |
+
self.enabled = enabled
|
452 |
+
self.innovation = None # Will be set by NEAT
|