Spaces:
Running
Running
File size: 7,330 Bytes
2aebcac cec247a 2aebcac 906a298 a42a1df 942948a 5fc9763 2aebcac 0629797 24b1ef5 0629797 8249b6c 906a298 8249b6c 906a298 f484f3a a42a1df 9cee66d a42a1df cec247a 2aebcac b573599 6c23599 b573599 98f7469 b573599 98f7469 b573599 2aebcac cec247a b573599 2aebcac c5843f4 2aebcac c5843f4 2aebcac c5843f4 2aebcac dd46f7a c5843f4 6dc48be dd46f7a 2aebcac 9396b96 789497b 9396b96 2aebcac 8612769 2aebcac 9396b96 2aebcac 9396b96 2aebcac 9396b96 2aebcac 9396b96 2aebcac dd46f7a 8612769 2aebcac dd46f7a 2aebcac e9bdf82 2aebcac c9f908d b573599 1a3e86a 5fc9763 1a3e86a 2aebcac b573599 5fc9763 b573599 5fc9763 b573599 2aebcac b573599 0629797 b573599 0629797 b573599 2aebcac 0629797 b573599 2aebcac 019ba1a 2aebcac 3d8a6f1 2aebcac |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 |
import gradio as gr
import torch
import soundfile as sf
import spaces
import os
import numpy as np
import re
from transformers import SpeechT5Processor, SpeechT5ForTextToSpeech, SpeechT5HifiGan, AutoTokenizer
from speechbrain.pretrained import EncoderClassifier
from datasets import load_dataset
from huggingface_hub import hf_hub_download
import uuid
import wave
import io
from piper import PiperVoice
device = "cuda" if torch.cuda.is_available() else "cpu"
auth_token = os.environ.get("hf_token") or True
model_path = hf_hub_download(repo_id="fahadqazi/piper-sindhi", filename="model.onnx", use_auth_token=auth_token)
config_path = hf_hub_download(repo_id="fahadqazi/piper-sindhi", filename="model.onnx.json", use_auth_token=auth_token)
voice = PiperVoice.load(model_path=model_path, config_path=config_path, use_cuda=device=="cuda")
synthesize_args = {
"speaker_id": 0,
"sentence_silence": 0.5
}
# def load_models_and_data():
# auth_token = os.environ.get("hf_token") or True
# model_name = "microsoft/speecht5_tts"
# processor = SpeechT5Processor.from_pretrained(model_name)
# tokenizer = AutoTokenizer.from_pretrained("fahadqazi/testts1234", use_auth_token=auth_token)
# processor.tokenizer = tokenizer
# model = SpeechT5ForTextToSpeech.from_pretrained("fahadqazi/testts1234", use_auth_token=auth_token).to(device)
# vocoder = SpeechT5HifiGan.from_pretrained("microsoft/speecht5_hifigan").to(device)
# return model, processor, vocoder
# model, processor, vocoder = load_models_and_data()
# embeddings_dataset = load_dataset("Matthijs/cmu-arctic-xvectors", split="validation")
# speaker_embeddings = embeddings_dataset[7306]["xvector"]
# speaker_embeddings = torch.tensor(speaker_embeddings).to(device)
# default_embedding = speaker_embeddings
replacements = [
# ("۾", "مين"), #
# ("۽", "ائين"), #
]
number_words = {
0: "ٻڙي",
1: "هڪ",
2: "ٻہ",
3: "ٽي",
4: "چار",
5: "پنج",
6: "ڇه",
7: "ست",
8: "اٺ",
9: "نوه",
10: "ڏهہ",
11: "يارنهن", 12: "ٻارنهن", 13: "تيرنهن", 14: "چوڏنهن", 15: "پنڌرنهن", 16: "سورنهن", 17: "سترنهن",
18: "ارڙنهن", 19: "اوڻينهن", 20: "ويهہ", 30: "ٽيهہ", 40: "چاليهہ", 50: "پنجها", 60: "سٺ", 70: "ستر",
80: "اسي", 90: "نوي", 100: "سوه", 1000: "هزار"
}
def number_to_words(number):
if number < 20:
return number_words[number]
elif number < 100:
tens, unit = divmod(number, 10)
return (number_words[unit] if unit else "") + (" " + number_words[tens * 10])
elif number < 1000:
hundreds, remainder = divmod(number, 100)
return (number_words[hundreds] + " سوه" if hundreds > 1 else "سوه") + (" " + number_to_words(remainder) if remainder else "")
elif number < 1000000:
thousands, remainder = divmod(number, 1000)
return (number_to_words(thousands) + " هزار" if thousands > 1 else "هزار") + (" " + number_to_words(remainder) if remainder else "")
elif number < 1000000000:
millions, remainder = divmod(number, 1000000)
return number_to_words(millions) + " ملين" + (" " + number_to_words(remainder) if remainder else "")
elif number < 1000000000000:
billions, remainder = divmod(number, 1000000000)
return number_to_words(billions) + " بلين" + (" " + number_to_words(remainder) if remainder else "")
else:
return str(number)
def replace_numbers_with_words(text):
def replace(match):
number = int(match.group())
return number_to_words(number)
# Find the numbers and change with words.
result = re.sub(r'\b\d+\b', replace, text)
return result
def normalize_text(text):
# Convert to lowercase
text = text.lower()
# Replace numbers followed by "ع" with "عيسوي"
text = re.sub(r'(\d+)\s*ع', r'\1 عيسوي', text)
# Replace numbers with words
text = replace_numbers_with_words(text)
# Apply character replacements
for old, new in replacements:
text = text.replace(old, new)
# # Remove punctuation
# text = re.sub(r'[^\w\s]', '', text)
return text
@spaces.GPU(duration=60)
def text_to_speech(text, audio_file=None):
# Normalize the input text
normalized_text = normalize_text(text)
print("Normalized text: ", normalized_text)
# Split text while preserving "..." (ellipsis)
segments = re.split(r'(\.\.\.|[\n.])', normalized_text)
segments = [x.strip() for x in segments]
print("segments: ", segments)
# Merge back the ellipsis with previous segment
combined_segments = []
temp_segment = ""
for segment in segments:
if segment == '...':
temp_segment += " ..." # Keep ellipsis as part of the previous segment
elif segment in ['.', '\n']:
if temp_segment:
combined_segments.append(temp_segment.strip())
temp_segment = ""
elif segment.strip() == "":
temp_segment = ""
else:
if temp_segment:
combined_segments.append(temp_segment.strip())
temp_segment = segment
if temp_segment:
combined_segments.append(temp_segment.strip())
# Prepare silences
short_silence = np.zeros(int(22050 * 0.05), dtype=np.int16) # 50ms for normal pause
long_silence = np.zeros(int(22050 * 0.15), dtype=np.int16) # 150ms for "..."
# Synthesize and concatenate audio
combined_audio = np.array([], dtype=np.int16)
for segment in combined_segments:
if segment.strip() == "":
continue
with io.BytesIO() as buffer:
voice.synthesize(segment, buffer, **synthesize_args)
buffer.seek(0)
audio_segment, _ = sf.read(buffer, dtype='int16')
combined_audio = np.concatenate((combined_audio, audio_segment))
# Add appropriate silence
if segment.endswith("..."):
combined_audio = np.concatenate((combined_audio, long_silence))
else:
combined_audio = np.concatenate((combined_audio, short_silence))
# Save the final output to a WAV file
output_file = f"{uuid.uuid4()}.wav"
sf.write(output_file, combined_audio, 22050) # Assuming 22050 Hz sample rate
return output_file
# def text_to_speech(text, audio_file=None):
# # Normalize the input text
# normalized_text = normalize_text(text)
# print("normalized text: ", normalized_text)
# # Generate speech: Write to file
# output_file = f"{uuid.uuid4()}.wav"
# with wave.open(output_file, "wb") as wav_file:
# voice.synthesize(normalized_text, wav_file, **synthesize_args)
# return output_file
iface = gr.Interface(
fn=text_to_speech,
inputs=[
gr.Textbox(label="Enter Sindhi text to convert to speech", value="هيلو ڪهڙا حال آهن")
],
outputs=[
gr.Audio(label="Generated Speech", type="numpy")
],
title="Sindhi Text-to-Speech Demo",
description="Enter Sindhi text, and listen to the generated speech. Use shorter messages for better results."
)
iface.launch(share=True) |