File size: 7,330 Bytes
2aebcac
 
 
 
 
 
 
cec247a
2aebcac
 
906a298
a42a1df
942948a
5fc9763
2aebcac
0629797
24b1ef5
0629797
8249b6c
 
 
 
 
 
 
906a298
8249b6c
 
906a298
f484f3a
a42a1df
 
9cee66d
a42a1df
cec247a
2aebcac
b573599
 
6c23599
b573599
 
98f7469
b573599
 
98f7469
b573599
 
2aebcac
cec247a
b573599
2aebcac
c5843f4
2aebcac
c5843f4
 
 
2aebcac
c5843f4
2aebcac
dd46f7a
c5843f4
6dc48be
dd46f7a
2aebcac
 
9396b96
 
789497b
9396b96
 
 
 
 
 
 
 
 
 
 
2aebcac
 
 
 
 
 
 
8612769
2aebcac
 
9396b96
2aebcac
 
9396b96
2aebcac
 
9396b96
2aebcac
 
9396b96
2aebcac
 
 
 
 
 
 
 
 
 
 
 
 
 
 
dd46f7a
8612769
 
 
2aebcac
 
 
 
 
dd46f7a
 
2aebcac
e9bdf82
 
2aebcac
 
 
 
 
 
 
c9f908d
b573599
 
 
 
1a3e86a
5fc9763
 
1a3e86a
2aebcac
b573599
 
 
 
 
 
 
 
 
 
 
5fc9763
 
b573599
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
5fc9763
 
 
b573599
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
2aebcac
b573599
0629797
b573599
 
 
0629797
b573599
2aebcac
0629797
b573599
 
 
 
 
 
2aebcac
 
 
 
 
019ba1a
2aebcac
 
 
 
3d8a6f1
 
2aebcac
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
import gradio as gr
import torch
import soundfile as sf
import spaces
import os
import numpy as np
import re
from transformers import SpeechT5Processor, SpeechT5ForTextToSpeech, SpeechT5HifiGan, AutoTokenizer
from speechbrain.pretrained import EncoderClassifier
from datasets import load_dataset
from huggingface_hub import hf_hub_download
import uuid
import wave
import io


from piper import PiperVoice


device = "cuda" if torch.cuda.is_available() else "cpu"


auth_token = os.environ.get("hf_token") or True

model_path = hf_hub_download(repo_id="fahadqazi/piper-sindhi", filename="model.onnx", use_auth_token=auth_token)
config_path = hf_hub_download(repo_id="fahadqazi/piper-sindhi", filename="model.onnx.json", use_auth_token=auth_token)


voice = PiperVoice.load(model_path=model_path, config_path=config_path, use_cuda=device=="cuda")

synthesize_args = {
    "speaker_id": 0,
    "sentence_silence": 0.5
}


# def load_models_and_data():
#     auth_token = os.environ.get("hf_token") or True
    
#     model_name = "microsoft/speecht5_tts"
#     processor = SpeechT5Processor.from_pretrained(model_name)
    
#     tokenizer = AutoTokenizer.from_pretrained("fahadqazi/testts1234", use_auth_token=auth_token)
#     processor.tokenizer = tokenizer

#     model = SpeechT5ForTextToSpeech.from_pretrained("fahadqazi/testts1234", use_auth_token=auth_token).to(device)
#     vocoder = SpeechT5HifiGan.from_pretrained("microsoft/speecht5_hifigan").to(device)

    
#     return model, processor, vocoder

# model, processor, vocoder = load_models_and_data()

# embeddings_dataset = load_dataset("Matthijs/cmu-arctic-xvectors", split="validation")
# speaker_embeddings = embeddings_dataset[7306]["xvector"]
# speaker_embeddings = torch.tensor(speaker_embeddings).to(device)

# default_embedding = speaker_embeddings 

replacements = [
    # ("۾", "مين"),  # 
    # ("۽", "ائين"),  # 
]

number_words = {
    0: "ٻڙي", 
    1: "هڪ", 
    2: "ٻہ", 
    3: "ٽي", 
    4: "چار", 
    5: "پنج", 
    6: "ڇه", 
    7: "ست", 
    8: "اٺ", 
    9: "نوه",
    10: "ڏهہ", 
    11: "يارنهن", 12: "ٻارنهن", 13: "تيرنهن", 14: "چوڏنهن", 15: "پنڌرنهن", 16: "سورنهن", 17: "سترنهن",
    18: "ارڙنهن", 19: "اوڻينهن", 20: "ويهہ", 30: "ٽيهہ", 40: "چاليهہ", 50: "پنجها", 60: "سٺ", 70: "ستر",
    80: "اسي", 90: "نوي", 100: "سوه", 1000: "هزار"
}

def number_to_words(number):
    if number < 20:
        return number_words[number]
    elif number < 100:
        tens, unit = divmod(number, 10)
        return (number_words[unit] if unit else "") + (" " + number_words[tens * 10])
    elif number < 1000:
        hundreds, remainder = divmod(number, 100)
        return (number_words[hundreds] + " سوه" if hundreds > 1 else "سوه") + (" " + number_to_words(remainder) if remainder else "")
    elif number < 1000000:
        thousands, remainder = divmod(number, 1000)
        return (number_to_words(thousands) + " هزار" if thousands > 1 else "هزار") + (" " + number_to_words(remainder) if remainder else "")
    elif number < 1000000000:
        millions, remainder = divmod(number, 1000000)
        return number_to_words(millions) + " ملين" + (" " + number_to_words(remainder) if remainder else "")
    elif number < 1000000000000:
        billions, remainder = divmod(number, 1000000000)
        return number_to_words(billions) + " بلين" + (" " + number_to_words(remainder) if remainder else "")
    else:
        return str(number)

def replace_numbers_with_words(text):
    def replace(match):
        number = int(match.group())
        return number_to_words(number)

    # Find the numbers and change with words.
    result = re.sub(r'\b\d+\b', replace, text)

    return result

def normalize_text(text):
    # Convert to lowercase
    text = text.lower()

    # Replace numbers followed by "ع" with "عيسوي"
    text = re.sub(r'(\d+)\s*ع', r'\1 عيسوي', text)
    
    # Replace numbers with words
    text = replace_numbers_with_words(text)
    
    # Apply character replacements
    for old, new in replacements:
        text = text.replace(old, new)
    
    # # Remove punctuation
    # text = re.sub(r'[^\w\s]', '', text)
    
    return text

@spaces.GPU(duration=60)
def text_to_speech(text, audio_file=None):
    # Normalize the input text
    normalized_text = normalize_text(text)

    print("Normalized text: ", normalized_text)

    # Split text while preserving "..." (ellipsis)
    segments = re.split(r'(\.\.\.|[\n.])', normalized_text)

    segments = [x.strip() for x in segments]

    print("segments: ", segments)
    
    # Merge back the ellipsis with previous segment
    combined_segments = []
    temp_segment = ""

    for segment in segments:
        if segment == '...':
            temp_segment += " ..."  # Keep ellipsis as part of the previous segment
        elif segment in ['.', '\n']:
            if temp_segment:
                combined_segments.append(temp_segment.strip())
            temp_segment = ""
        elif segment.strip() == "":
            temp_segment = ""
        else:
            if temp_segment:
                combined_segments.append(temp_segment.strip())
            temp_segment = segment

    if temp_segment:
        combined_segments.append(temp_segment.strip())

    # Prepare silences
    short_silence = np.zeros(int(22050 * 0.05), dtype=np.int16)  # 50ms for normal pause
    long_silence = np.zeros(int(22050 * 0.15), dtype=np.int16)   # 150ms for "..."

    # Synthesize and concatenate audio
    combined_audio = np.array([], dtype=np.int16)

    for segment in combined_segments:
        if segment.strip() == "":
            continue
            
        with io.BytesIO() as buffer:
            voice.synthesize(segment, buffer, **synthesize_args)
            buffer.seek(0)
            audio_segment, _ = sf.read(buffer, dtype='int16')

        combined_audio = np.concatenate((combined_audio, audio_segment))

        # Add appropriate silence
        if segment.endswith("..."):
            combined_audio = np.concatenate((combined_audio, long_silence))
        else:
            combined_audio = np.concatenate((combined_audio, short_silence))

    # Save the final output to a WAV file
    output_file = f"{uuid.uuid4()}.wav"
    sf.write(output_file, combined_audio, 22050)  # Assuming 22050 Hz sample rate
    
    return output_file
    
# def text_to_speech(text, audio_file=None):
#     # Normalize the input text
#     normalized_text = normalize_text(text)

#     print("normalized text: ", normalized_text)
    

#     # Generate speech: Write to file
#     output_file = f"{uuid.uuid4()}.wav"
#     with wave.open(output_file, "wb") as wav_file:
#         voice.synthesize(normalized_text, wav_file, **synthesize_args)
    
#     return output_file

    
iface = gr.Interface(
    fn=text_to_speech,
    inputs=[
        gr.Textbox(label="Enter Sindhi text to convert to speech", value="هيلو ڪهڙا حال آهن")
    ],
    outputs=[
        gr.Audio(label="Generated Speech", type="numpy")
    ],
    title="Sindhi Text-to-Speech Demo",
    description="Enter Sindhi text, and listen to the generated speech. Use shorter messages for better results."
)

iface.launch(share=True)