File size: 5,688 Bytes
2aebcac
 
 
 
 
 
 
cec247a
2aebcac
 
906a298
a42a1df
942948a
2aebcac
0629797
24b1ef5
0629797
8249b6c
 
 
 
 
 
 
906a298
8249b6c
 
906a298
f484f3a
a42a1df
 
9cee66d
a42a1df
cec247a
2aebcac
 
6c23599
 
2aebcac
 
98f7469
6c23599
98f7469
 
6c23599
2aebcac
 
cec247a
 
2aebcac
c5843f4
2aebcac
c5843f4
 
 
2aebcac
c5843f4
2aebcac
dd46f7a
c5843f4
6dc48be
dd46f7a
2aebcac
 
9396b96
 
 
 
 
 
 
 
 
 
 
 
 
 
2aebcac
 
 
 
 
 
 
8612769
2aebcac
 
9396b96
2aebcac
 
9396b96
2aebcac
 
9396b96
2aebcac
 
9396b96
2aebcac
 
 
 
 
 
 
 
 
 
 
 
 
 
 
dd46f7a
8612769
 
 
2aebcac
 
 
 
 
dd46f7a
 
2aebcac
e9bdf82
 
2aebcac
 
 
 
 
 
 
c9f908d
 
2aebcac
0629797
 
2aebcac
0629797
 
2aebcac
0629797
 
 
 
 
 
 
 
a42a1df
 
 
 
2aebcac
0629797
 
 
 
 
 
a42a1df
2aebcac
 
 
 
 
019ba1a
2aebcac
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
import gradio as gr
import torch
import soundfile as sf
import spaces
import os
import numpy as np
import re
from transformers import SpeechT5Processor, SpeechT5ForTextToSpeech, SpeechT5HifiGan, AutoTokenizer
from speechbrain.pretrained import EncoderClassifier
from datasets import load_dataset
from huggingface_hub import hf_hub_download
import uuid
import wave


from piper import PiperVoice


device = "cuda" if torch.cuda.is_available() else "cpu"


auth_token = os.environ.get("hf_token") or True

model_path = hf_hub_download(repo_id="fahadqazi/piper-sindhi", filename="model.onnx", use_auth_token=auth_token)
config_path = hf_hub_download(repo_id="fahadqazi/piper-sindhi", filename="model.onnx.json", use_auth_token=auth_token)


voice = PiperVoice.load(model_path=model_path, config_path=config_path, use_cuda=device=="cuda")

synthesize_args = {
    "speaker_id": 0,
    "sentence_silence": 0.5
}


def load_models_and_data():
    auth_token = os.environ.get("hf_token") or True
    
    model_name = "microsoft/speecht5_tts"
    processor = SpeechT5Processor.from_pretrained(model_name)
    
    tokenizer = AutoTokenizer.from_pretrained("fahadqazi/testts1234", use_auth_token=auth_token)
    processor.tokenizer = tokenizer

    model = SpeechT5ForTextToSpeech.from_pretrained("fahadqazi/testts1234", use_auth_token=auth_token).to(device)
    vocoder = SpeechT5HifiGan.from_pretrained("microsoft/speecht5_hifigan").to(device)

    
    return model, processor, vocoder

# model, processor, vocoder = load_models_and_data()

# embeddings_dataset = load_dataset("Matthijs/cmu-arctic-xvectors", split="validation")
# speaker_embeddings = embeddings_dataset[7306]["xvector"]
# speaker_embeddings = torch.tensor(speaker_embeddings).to(device)

# default_embedding = speaker_embeddings 

replacements = [
    # ("۾", "مين"),  # 
    # ("۽", "ائين"),  # 
]

number_words = {
    0: "ٻڙي", 
    1: "هڪ", 
    2: "بہ", 
    3: "ٽي", 
    4: "چار", 
    5: "پنج", 
    6: "ڇه", 
    7: "ست", 
    8: "اٺ", 
    9: "نوه",
    10: "ڏهہ", 
    11: "يارنهن", 12: "ٻارنهن", 13: "تيرنهن", 14: "چوڏنهن", 15: "پنڌرنهن", 16: "سورنهن", 17: "سترنهن",
    18: "ارڙنهن", 19: "اوڻينهن", 20: "ويهہ", 30: "ٽيهہ", 40: "چاليهہ", 50: "پنجها", 60: "سٺ", 70: "ستر",
    80: "اسي", 90: "نوي", 100: "سوه", 1000: "هزار"
}

def number_to_words(number):
    if number < 20:
        return number_words[number]
    elif number < 100:
        tens, unit = divmod(number, 10)
        return (number_words[unit] if unit else "") + (" " + number_words[tens * 10])
    elif number < 1000:
        hundreds, remainder = divmod(number, 100)
        return (number_words[hundreds] + " سوه" if hundreds > 1 else "سوه") + (" " + number_to_words(remainder) if remainder else "")
    elif number < 1000000:
        thousands, remainder = divmod(number, 1000)
        return (number_to_words(thousands) + " هزار" if thousands > 1 else "هزار") + (" " + number_to_words(remainder) if remainder else "")
    elif number < 1000000000:
        millions, remainder = divmod(number, 1000000)
        return number_to_words(millions) + " ملين" + (" " + number_to_words(remainder) if remainder else "")
    elif number < 1000000000000:
        billions, remainder = divmod(number, 1000000000)
        return number_to_words(billions) + " بلين" + (" " + number_to_words(remainder) if remainder else "")
    else:
        return str(number)

def replace_numbers_with_words(text):
    def replace(match):
        number = int(match.group())
        return number_to_words(number)

    # Find the numbers and change with words.
    result = re.sub(r'\b\d+\b', replace, text)

    return result

def normalize_text(text):
    # Convert to lowercase
    text = text.lower()

    # Replace numbers followed by "ع" with "عيسوي"
    text = re.sub(r'(\d+)\s*ع', r'\1 عيسوي', text)
    
    # Replace numbers with words
    text = replace_numbers_with_words(text)
    
    # Apply character replacements
    for old, new in replacements:
        text = text.replace(old, new)
    
    # # Remove punctuation
    # text = re.sub(r'[^\w\s]', '', text)
    
    return text

@spaces.GPU(duration=60)
def text_to_speech(text, audio_file=None):
    # Normalize the input text
    normalized_text = normalize_text(text)

    print("normalized text: ", normalized_text)
    
    # # Prepare the input for the model
    # inputs = processor(text=normalized_text, return_tensors="pt").to(device)
    
    # # Use the default speaker embedding
    # speaker_embeddings = default_embedding
    
    # # Generate speech
    # with torch.no_grad():
    #     speech = model.generate_speech(inputs["input_ids"], speaker_embeddings.unsqueeze(0), vocoder=vocoder)
    
    # speech_np = speech.cpu().numpy()

    # return (16000, speech_np)

    # Generate speech: Write to file
    output_file = f"{uuid.uuid4()}.wav"
    with wave.open(output_file, "wb") as wav_file:
        voice.synthesize(normalized_text, wav_file, **synthesize_args)
    
    # Save the audio to a file
    # with open("output.wav", "wb") as f:
    #     f.write(audio)

    # return audio_file

    return output_file

    
iface = gr.Interface(
    fn=text_to_speech,
    inputs=[
        gr.Textbox(label="Enter Sindhi text to convert to speech", value="هيلو ڪهڙا حال آهن")
    ],
    outputs=[
        gr.Audio(label="Generated Speech", type="numpy")
    ],
    title="Sindhi SpeechT5 Text-to-Speech Demo",
    description="Enter Sindhi text, and listen to the generated speech."
)

iface.launch(share=True)