fahadqazi's picture
Update app.py
5fc9763 verified
raw
history blame
7.33 kB
import gradio as gr
import torch
import soundfile as sf
import spaces
import os
import numpy as np
import re
from transformers import SpeechT5Processor, SpeechT5ForTextToSpeech, SpeechT5HifiGan, AutoTokenizer
from speechbrain.pretrained import EncoderClassifier
from datasets import load_dataset
from huggingface_hub import hf_hub_download
import uuid
import wave
import io
from piper import PiperVoice
device = "cuda" if torch.cuda.is_available() else "cpu"
auth_token = os.environ.get("hf_token") or True
model_path = hf_hub_download(repo_id="fahadqazi/piper-sindhi", filename="model.onnx", use_auth_token=auth_token)
config_path = hf_hub_download(repo_id="fahadqazi/piper-sindhi", filename="model.onnx.json", use_auth_token=auth_token)
voice = PiperVoice.load(model_path=model_path, config_path=config_path, use_cuda=device=="cuda")
synthesize_args = {
"speaker_id": 0,
"sentence_silence": 0.5
}
# def load_models_and_data():
# auth_token = os.environ.get("hf_token") or True
# model_name = "microsoft/speecht5_tts"
# processor = SpeechT5Processor.from_pretrained(model_name)
# tokenizer = AutoTokenizer.from_pretrained("fahadqazi/testts1234", use_auth_token=auth_token)
# processor.tokenizer = tokenizer
# model = SpeechT5ForTextToSpeech.from_pretrained("fahadqazi/testts1234", use_auth_token=auth_token).to(device)
# vocoder = SpeechT5HifiGan.from_pretrained("microsoft/speecht5_hifigan").to(device)
# return model, processor, vocoder
# model, processor, vocoder = load_models_and_data()
# embeddings_dataset = load_dataset("Matthijs/cmu-arctic-xvectors", split="validation")
# speaker_embeddings = embeddings_dataset[7306]["xvector"]
# speaker_embeddings = torch.tensor(speaker_embeddings).to(device)
# default_embedding = speaker_embeddings
replacements = [
# ("۾", "مين"), #
# ("۽", "ائين"), #
]
number_words = {
0: "ٻڙي",
1: "هڪ",
2: "ٻہ",
3: "ٽي",
4: "چار",
5: "پنج",
6: "ڇه",
7: "ست",
8: "اٺ",
9: "نوه",
10: "ڏهہ",
11: "يارنهن", 12: "ٻارنهن", 13: "تيرنهن", 14: "چوڏنهن", 15: "پنڌرنهن", 16: "سورنهن", 17: "سترنهن",
18: "ارڙنهن", 19: "اوڻينهن", 20: "ويهہ", 30: "ٽيهہ", 40: "چاليهہ", 50: "پنجها", 60: "سٺ", 70: "ستر",
80: "اسي", 90: "نوي", 100: "سوه", 1000: "هزار"
}
def number_to_words(number):
if number < 20:
return number_words[number]
elif number < 100:
tens, unit = divmod(number, 10)
return (number_words[unit] if unit else "") + (" " + number_words[tens * 10])
elif number < 1000:
hundreds, remainder = divmod(number, 100)
return (number_words[hundreds] + " سوه" if hundreds > 1 else "سوه") + (" " + number_to_words(remainder) if remainder else "")
elif number < 1000000:
thousands, remainder = divmod(number, 1000)
return (number_to_words(thousands) + " هزار" if thousands > 1 else "هزار") + (" " + number_to_words(remainder) if remainder else "")
elif number < 1000000000:
millions, remainder = divmod(number, 1000000)
return number_to_words(millions) + " ملين" + (" " + number_to_words(remainder) if remainder else "")
elif number < 1000000000000:
billions, remainder = divmod(number, 1000000000)
return number_to_words(billions) + " بلين" + (" " + number_to_words(remainder) if remainder else "")
else:
return str(number)
def replace_numbers_with_words(text):
def replace(match):
number = int(match.group())
return number_to_words(number)
# Find the numbers and change with words.
result = re.sub(r'\b\d+\b', replace, text)
return result
def normalize_text(text):
# Convert to lowercase
text = text.lower()
# Replace numbers followed by "ع" with "عيسوي"
text = re.sub(r'(\d+)\s*ع', r'\1 عيسوي', text)
# Replace numbers with words
text = replace_numbers_with_words(text)
# Apply character replacements
for old, new in replacements:
text = text.replace(old, new)
# # Remove punctuation
# text = re.sub(r'[^\w\s]', '', text)
return text
@spaces.GPU(duration=60)
def text_to_speech(text, audio_file=None):
# Normalize the input text
normalized_text = normalize_text(text)
print("Normalized text: ", normalized_text)
# Split text while preserving "..." (ellipsis)
segments = re.split(r'(\.\.\.|[\n.])', normalized_text)
segments = [x.strip() for x in segments]
print("segments: ", segments)
# Merge back the ellipsis with previous segment
combined_segments = []
temp_segment = ""
for segment in segments:
if segment == '...':
temp_segment += " ..." # Keep ellipsis as part of the previous segment
elif segment in ['.', '\n']:
if temp_segment:
combined_segments.append(temp_segment.strip())
temp_segment = ""
elif segment.strip() == "":
temp_segment = ""
else:
if temp_segment:
combined_segments.append(temp_segment.strip())
temp_segment = segment
if temp_segment:
combined_segments.append(temp_segment.strip())
# Prepare silences
short_silence = np.zeros(int(22050 * 0.05), dtype=np.int16) # 50ms for normal pause
long_silence = np.zeros(int(22050 * 0.15), dtype=np.int16) # 150ms for "..."
# Synthesize and concatenate audio
combined_audio = np.array([], dtype=np.int16)
for segment in combined_segments:
if segment.strip() == "":
continue
with io.BytesIO() as buffer:
voice.synthesize(segment, buffer, **synthesize_args)
buffer.seek(0)
audio_segment, _ = sf.read(buffer, dtype='int16')
combined_audio = np.concatenate((combined_audio, audio_segment))
# Add appropriate silence
if segment.endswith("..."):
combined_audio = np.concatenate((combined_audio, long_silence))
else:
combined_audio = np.concatenate((combined_audio, short_silence))
# Save the final output to a WAV file
output_file = f"{uuid.uuid4()}.wav"
sf.write(output_file, combined_audio, 22050) # Assuming 22050 Hz sample rate
return output_file
# def text_to_speech(text, audio_file=None):
# # Normalize the input text
# normalized_text = normalize_text(text)
# print("normalized text: ", normalized_text)
# # Generate speech: Write to file
# output_file = f"{uuid.uuid4()}.wav"
# with wave.open(output_file, "wb") as wav_file:
# voice.synthesize(normalized_text, wav_file, **synthesize_args)
# return output_file
iface = gr.Interface(
fn=text_to_speech,
inputs=[
gr.Textbox(label="Enter Sindhi text to convert to speech", value="هيلو ڪهڙا حال آهن")
],
outputs=[
gr.Audio(label="Generated Speech", type="numpy")
],
title="Sindhi Text-to-Speech Demo",
description="Enter Sindhi text, and listen to the generated speech. Use shorter messages for better results."
)
iface.launch(share=True)