File size: 6,856 Bytes
9a3e0af
 
 
 
 
 
ab2a3d2
9a3e0af
ab2a3d2
5bd7940
9a3e0af
 
 
 
788bd3b
ab2a3d2
 
788bd3b
5bd7940
 
 
46b9035
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
9a3e0af
822f07f
 
 
 
 
ab2a3d2
46b9035
 
 
 
 
 
9a3e0af
46b9035
 
 
9a3e0af
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
5bd7940
 
 
 
 
 
 
 
 
 
9a3e0af
ab2a3d2
 
5bd7940
 
 
 
 
 
 
9a3e0af
 
 
059cd4b
9a3e0af
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
ab2a3d2
9a3e0af
 
aaf4096
 
9a3e0af
 
 
ab2a3d2
 
 
 
 
 
9a3e0af
 
ab2a3d2
9a3e0af
 
93224e1
9a3e0af
93224e1
9a3e0af
 
 
 
 
 
 
 
5c3a771
 
 
 
 
 
 
 
 
 
 
 
 
9a3e0af
 
 
46b9035
9a3e0af
 
46b9035
 
9ff2c00
46b9035
 
 
 
 
 
 
9a3e0af
 
46b9035
9a3e0af
 
 
 
46b9035
 
 
 
 
9a3e0af
 
46b9035
5c3a771
46b9035
 
5c3a771
46b9035
 
 
 
 
 
f8a135a
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
import gradio as gr
import torch
import tempfile
import os
import requests
from moviepy import VideoFileClip
from transformers import pipeline
import torchaudio
from speechbrain.pretrained.interfaces import foreign_class
from transformers import WhisperForConditionalGeneration, WhisperProcessor

# Load Whisper model to confirm English
whisper_pipe = pipeline("automatic-speech-recognition", model="openai/whisper-tiny", device="cpu")

# Loading accent classifier
classifier = foreign_class(source="Jzuluaga/accent-id-commonaccent_xlsr-en-english", pymodule_file="custom_interface.py", classname="CustomEncoderWav2vec2Classifier")

# these are for fallback in case transformer's whisper-tiny doesn't return language
model = WhisperForConditionalGeneration.from_pretrained("openai/whisper-tiny")
processor = WhisperProcessor.from_pretrained("openai/whisper-tiny")


ACCENT_LABELS = {
    "us": "American Accent",
    "england": "British Accent",
    "australia": "Australian Accent",
    "indian": "Indian Accent",
    "canada": "Canadian Accent",
    "bermuda": "Bermudian Accent",
    "scotland": "Scottish Accent",
    "african": "African Accent",
    "ireland": "Irish Accent",
    "newzealand": "New Zealand Accent",
    "wales": "Welsh Accent",
    "malaysia": "Malaysian Accent",
    "philippines": "Philippine Accent",
    "singapore": "Singaporean Accent",
    "hongkong": "Hong Kong Accent",
    "southatlandtic": "South Atlantic Accent"
}


def classify_accent(audio_tensor, sample_rate):
    if sample_rate != 16000:
        resampler = torchaudio.transforms.Resample(orig_freq=sample_rate, new_freq=16000)
        audio_tensor = resampler(audio_tensor)

    out_prob, score, index, text_lab = classifier.classify_batch(audio_tensor)

    print(out_prob, score, index, text_lab)

    accent_label = text_lab[0]
    readable_accent = ACCENT_LABELS.get(accent_label, accent_label.title() + " Accent")


    return {
        "accent": readable_accent,
        "confidence": round(score[0].item() * 100, 2),
        "summary": f"The speaker is predicted to have a {readable_accent} with {round(score[0].item() * 100, 2)}% confidence."
    }

def download_video(url):
    video_path = tempfile.NamedTemporaryFile(suffix=".mp4", delete=False).name
    response = requests.get(url, stream=True)
    with open(video_path, "wb") as f:
        for chunk in response.iter_content(chunk_size=1024*1024):
            if chunk:
                f.write(chunk)
    return video_path

def extract_audio(video_path):
    audio_path = tempfile.NamedTemporaryFile(suffix=".wav", delete=False).name
    clip = VideoFileClip(video_path)
    clip.audio.write_audiofile(audio_path, codec='pcm_s16le')
    return audio_path


def detect_language(audio_path):
    audio, sr = torchaudio.load(audio_path)
    inputs = processor(audio[0], sampling_rate=sr, return_tensors="pt")
    logits = model.forward(**inputs).logits
    predicted_ids = torch.argmax(logits, dim=-1)
    decoded = processor.tokenizer.batch_decode(predicted_ids, skip_special_tokens=True)
    return decoded[0]  # crude approximation


def transcribe(audio_path):
    result = whisper_pipe(audio_path, return_language=True)
    print(result)

    lang = result['chunks'][0]['language']

    if lang == None:
        lang = detect_language(audio_path)

    return result['text'], lang

def analyze_accent(url_or_file):
    try:
        print("Video path 1:", url_or_file)
        if url_or_file.startswith("http"):
            video_path = download_video(url_or_file)
        else:
            video_path = url_or_file

        print("Video path:", video_path)

        audio_path = extract_audio(video_path)


        print("Audio path:", audio_path)



        # Load audio with torchaudio
        waveform, sample_rate = torchaudio.load(audio_path)

        # Transcription (to verify English)
        transcript = transcribe(audio_path)
        if len(transcript[0].strip()) < 3:
            return "Could not understand speech. Please try another video."

        print("Transcript:", transcript)

        # Accent classification
        result = classify_accent(waveform, sample_rate)

        output = f"**Language**: {transcript[1]}\n\n"

        if transcript[1].lower() != "en" and transcript[1].lower() != "english":
            return "The video is not in English. Please provide an English video."

        output += f"**Accent**: {result['accent']}\n\n"
        output += f"**Confidence**: {result['confidence']}%\n\n"
        output += f"**Explanation**: {result['summary']}\n\n"
        output += f"**Transcript** (first 200 chars): {transcript[0][:200]}..."

        # Clean up temp files
        if url_or_file.startswith("http"):
            os.remove(video_path)

        os.remove(audio_path)

        return output
    except Exception as e:
        return f"❌ Error: {str(e)}"


with gr.Blocks() as demo:

    gr.Markdown("""
        # English Accent Classifier!

        ### How it works?
        - Takes video URL or video file  
        - Converts it into audio  
        - Uses `Whisper-tiny` to detect which language is being spoken  
        - If the detected language is English, it uses SpeechBrain's Accent ID classifier to show the speaker's accent along with a confidence score.

        **Q: What if my transformers version doesn't expose `return_language` for `whisper-tiny`?**  
        A: Then it will approximate the language by counting which language's tokens it is using the most.
        """)

    with gr.Tab("From URL"):
        url_input = gr.Textbox(label="Video URL (MP4)")
        url_output = gr.Markdown("""### Output will be shown here!""", elem_classes="output-box")
        gr.Button("Analyze").click(fn=analyze_accent, inputs=url_input, outputs=url_output)


        gr.Examples(
            examples=[["https://huggingface.co/spaces/fahadqazi/accent-classifier/resolve/main/examples/american.mp4"], ["https://huggingface.co/spaces/fahadqazi/accent-classifier/resolve/main/examples/british.mp4"]],
            inputs=[url_input],
            outputs=[url_output],
            label="Example MP4 Video URLs",
            examples_per_page=5
        )


    with gr.Tab("From File"):
        file_input = gr.File(label="Upload MP4 Video", file_types=[".mp4"])
        file_output = gr.Markdown("""### Output will be shown here!""", elem_classes="output-box")
        gr.Button("Analyze").click(fn=analyze_accent, inputs=file_input, outputs=file_output)


        gr.Examples(
            examples=[[os.getcwd() + "/examples/american.mp4"], [os.getcwd() + "/examples/british.mp4"]],
            inputs=[file_input],
            outputs=[file_output],
            label="Example MP4 Videos",
            examples_per_page=5
        )



demo.css = """
.output-box {
    min-height: 70px;
    overflow-y: auto;
    padding: 10px;
}
"""


demo.launch()