Spaces:
Sleeping
Sleeping
File size: 13,118 Bytes
3ec9224 5be8df6 ebc9208 87a53c5 ebc9208 87a53c5 ebc9208 882bb4e ebc9208 882bb4e ebc9208 d0c3ad5 ebc9208 d0c3ad5 882bb4e ebc9208 87a53c5 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 |
import gradio as gr
import os
from langchain_community.document_loaders import PyPDFLoader
from langchain.text_splitter import RecursiveCharacterTextSplitter
from langchain_community.vectorstores import Chroma
from langchain.chains import ConversationalRetrievalChain
from langchain_community.embeddings import HuggingFaceEmbeddings
from langchain_community.llms import HuggingFaceEndpoint
from langchain.memory import ConversationBufferMemory
from pathlib import Path
import chromadb
from unidecode import unidecode
import re
# List of available LLM models
list_llm = [
"mistralai/Mistral-7B-Instruct-v0.2", "mistralai/Mixtral-8x7B-Instruct-v0.1",
"google/gemma-7b-it", "google/gemma-2b-it",
"HuggingFaceH4/zephyr-7b-beta", "HuggingFaceH4/zephyr-7b-gemma-v0.1",
"meta-llama/Llama-2-7b-chat-hf", "microsoft/phi-2",
"TinyLlama/TinyLlama-1.1B-Chat-v1.0", "mosaicml/mpt-7b-instruct",
"tiiuae/falcon-7b-instruct", "google/flan-t5-xxl"
]
list_llm_simple = [os.path.basename(llm) for llm in list_llm]
def load_doc(list_file_path, chunk_size, chunk_overlap):
loaders = [PyPDFLoader(x) for x in list_file_path]
pages = []
for loader in loaders:
pages.extend(loader.load())
text_splitter = RecursiveCharacterTextSplitter(
chunk_size=chunk_size,
chunk_overlap=chunk_overlap
)
doc_splits = text_splitter.split_documents(pages)
return doc_splits
def create_db(splits, collection_name):
embedding = HuggingFaceEmbeddings()
new_client = chromadb.EphemeralClient()
vectordb = Chroma.from_documents(
documents=splits,
embedding=embedding,
client=new_client,
collection_name=collection_name
)
return vectordb
def initialize_llmchain(llm_model, temperature, max_tokens, top_k, vector_db, progress=gr.Progress()):
progress(0.5, desc="Initializing HF Hub...")
llm = HuggingFaceEndpoint(
repo_id=llm_model,
temperature=temperature,
max_new_tokens=max_tokens,
top_k=top_k
)
progress(0.75, desc="Defining buffer memory...")
memory = ConversationBufferMemory(
memory_key="chat_history",
output_key='answer',
return_messages=True
)
retriever = vector_db.as_retriever(search_kwargs={'k': 5}) # Increased from 3 to 5
progress(0.8, desc="Defining retrieval chain...")
qa_chain = ConversationalRetrievalChain.from_llm(
llm,
retriever=retriever,
chain_type="stuff",
memory=memory,
return_source_documents=True,
verbose=False,
)
progress(0.9, desc="Done!")
return qa_chain
def create_collection_name(filepath):
collection_name = Path(filepath).stem
collection_name = collection_name.replace(" ", "-")
collection_name = unidecode(collection_name)
collection_name = re.sub('[^A-Za-z0-9]+', '-', collection_name)
collection_name = collection_name[:50]
if len(collection_name) < 3:
collection_name = collection_name + 'xyz'
if not collection_name[0].isalnum():
collection_name = 'A' + collection_name[1:]
if not collection_name[-1].isalnum():
collection_name = collection_name[:-1] + 'Z'
return collection_name
def initialize_database(list_file_obj, chunk_size, chunk_overlap, progress=gr.Progress()):
list_file_path = [x.name for x in list_file_obj if x is not None]
progress(0.1, desc="Creating collection...")
collection_name = create_collection_name(list_file_path[0])
progress(0.25, desc="Loading documents...")
doc_splits = load_doc(list_file_path, chunk_size, chunk_overlap)
progress(0.5, desc="Generating vector database...")
vector_db = create_db(doc_splits, collection_name)
progress(0.9, desc="Done!")
return vector_db, collection_name, "Completed!"
def initialize_LLM(llm_option, llm_temperature, max_tokens, top_k, vector_db, progress=gr.Progress()):
llm_name = list_llm[llm_option]
qa_chain = initialize_llmchain(llm_name, llm_temperature, max_tokens, top_k, vector_db, progress)
return qa_chain, "Completed!"
def format_chat_history(message, chat_history):
formatted_chat_history = []
for user_message, bot_message in chat_history:
formatted_chat_history.append(f"User: {user_message}")
formatted_chat_history.append(f"Assistant: {bot_message}")
return formatted_chat_history
def conversation(qa_chain, message, history):
formatted_chat_history = format_chat_history(message, history)
response = qa_chain({"question": message, "chat_history": formatted_chat_history})
response_answer = response["answer"]
if response_answer.find("Helpful Answer:") != -1:
response_answer = response_answer.split("Helpful Answer:")[-1]
response_sources = response["source_documents"]
source_info = []
for i in range(min(5, len(response_sources))): # Increased from 3 to 5
source = response_sources[i]
source_info.append({
'content': source.page_content.strip(),
'page': source.metadata["page"] + 1
})
new_history = history + [(message, response_answer)]
return qa_chain, gr.update(value=""), new_history, *[info['content'] for info in source_info], *[info['page'] for info in source_info]
# The rest of the code (demo function and UI setup) remains largely the same,
# but update the outputs of the conversation function to handle 5 sources instead of 3.
def upload_file(file_obj):
list_file_path = []
for idx, file in enumerate(file_obj):
file_path = file_obj.name
list_file_path.append(file_path)
print(file_path)
# initialize_database(file_path, progress)
return list_file_path
def demo():
with gr.Blocks(theme="base") as demo:
vector_db = gr.State()
qa_chain = gr.State()
collection_name = gr.State()
gr.Markdown(
"""<center><h2>Creatore di chatbot basato su PDF</center></h2>
<h3>Potete fare domande su i vostri documenti PDF</h3>""")
gr.Markdown(
"""<b>Nota:</b> Questo assistente IA, utilizzando Langchain e modelli LLM open source, esegue generazione aumentata da recupero (RAG) dai vostri documenti PDF. \
L'interfaccia utente esplicitamente mostra i passaggi multipli per aiutare a comprendere il flusso di lavoro RAG.
Questo chatbot tiene conto delle domande passate nel generare le risposte (tramite memoria conversazionale), e include riferimenti ai documenti per scopi di chiarezza.<br>
<br><b>Avviso:</b> Questo spazio utilizza l'hardware di base CPU gratuito da Hugging Face. Alcuni passaggi e modelli LLM usati qui sotto (endpoint di inferenza gratuiti) possono richiedere del tempo per generare una risposta.
""")
with gr.Tab("Step 1 - Carica PDFs"):
with gr.Row():
document = gr.Files(height=100, file_count="multiple", file_types=["pdf"], interactive=True, label="Upload your PDF documents (single or multiple)")
# upload_btn = gr.UploadButton("Loading document...", height=100, file_count="multiple", file_types=["pdf"], scale=1)
with gr.Tab("Step 2 - Processa i documenti"):
with gr.Row():
db_btn = gr.Radio(["ChromaDB"], label="Vector database type", value = "ChromaDB", type="index", info="Choose your vector database")
with gr.Accordion("Opzioni Avanzate - Document text splitter", open=False):
with gr.Row():
slider_chunk_size = gr.Slider(minimum = 100, maximum = 1000, value=1000, step=20, label="Chunk size", info="Chunk size", interactive=True)
with gr.Row():
slider_chunk_overlap = gr.Slider(minimum = 10, maximum = 200, value=100, step=10, label="Chunk overlap", info="Chunk overlap", interactive=True)
with gr.Row():
db_progress = gr.Textbox(label="Vector database initialization", value="None")
with gr.Row():
db_btn = gr.Button("Genera vector database")
with gr.Tab("Step 3 - Inizializza QA chain"):
with gr.Row():
llm_btn = gr.Radio(list_llm_simple, \
label="LLM models", value = list_llm_simple[5], type="index", info="Scegli il tuo modello LLM")
with gr.Accordion("Advanced options - LLM model", open=False):
with gr.Row():
slider_temperature = gr.Slider(minimum = 0.01, maximum = 1.0, value=0.3, step=0.1, label="Temperature", info="Model temperature", interactive=True)
with gr.Row():
slider_maxtokens = gr.Slider(minimum = 224, maximum = 4096, value=1024, step=32, label="Max Tokens", info="Model max tokens", interactive=True)
with gr.Row():
slider_topk = gr.Slider(minimum = 1, maximum = 10, value=3, step=1, label="top-k samples", info="Model top-k samples", interactive=True)
with gr.Row():
language_btn = gr.Radio(["Italian", "English"], label="Linua", value="Italian", type="index", info="Seleziona la lingua per il chatbot")
with gr.Row():
llm_progress = gr.Textbox(value="None",label="QA chain initialization")
with gr.Row():
qachain_btn = gr.Button("Inizializza Question Answering chain")
with gr.Tab("Passo 4 - Chatbot"):
chatbot = gr.Chatbot(height=300)
with gr.Accordion("Opzioni avanzate - Riferimenti ai documenti", open=False):
with gr.Row():
doc_source1 = gr.Textbox(label="Riferimento 1", lines=2, container=True, scale=20)
source1_page = gr.Number(label="Pagina", scale=1)
with gr.Row():
doc_source2 = gr.Textbox(label="Riferimento 2", lines=2, container=True, scale=20)
source2_page = gr.Number(label="Pagina", scale=1)
with gr.Row():
doc_source3 = gr.Textbox(label="Riferimento 3", lines=2, container=True, scale=20)
source3_page = gr.Number(label="Pagina", scale=1)
with gr.Row():
doc_source4 = gr.Textbox(label="Riferimento 4", lines=2, container=True, scale=20)
source4_page = gr.Number(label="Pagina", scale=1)
with gr.Row():
doc_source5 = gr.Textbox(label="Riferimento 5", lines=2, container=True, scale=20)
source5_page = gr.Number(label="Pagina", scale=1)
with gr.Row():
msg = gr.Textbox(placeholder="Inserisci messaggio (es. 'Di cosa tratta questo documento?')", container=True)
with gr.Row():
submit_btn = gr.Button("Invia messaggio")
clear_btn = gr.ClearButton([msg, chatbot], value="Cancella conversazione")
# Preprocessing events
#upload_btn.upload(upload_file, inputs=[upload_btn], outputs=[document])
db_btn.click(initialize_database, \
inputs=[document, slider_chunk_size, slider_chunk_overlap], \
outputs=[vector_db, collection_name, db_progress])
qachain_btn.click(initialize_LLM, \
inputs=[llm_btn, slider_temperature, slider_maxtokens, slider_topk, vector_db], \
outputs=[qa_chain, llm_progress]).then(lambda:[None, "", 0, "", 0, "", 0, "", 0, "", 0], \
inputs=None, \
outputs=[chatbot,
doc_source1, source1_page,
doc_source2, source2_page,
doc_source3, source3_page,
doc_source4, source4_page,
doc_source5, source5_page], queue=False)
# Chatbot events
msg.submit(conversation, \
inputs=[qa_chain, msg, chatbot], \
outputs=[qa_chain, msg, chatbot, \
doc_source1, source1_page,
doc_source2, source2_page,
doc_source3, source3_page,
doc_source4, source4_page,
doc_source5, source5_page], queue=False)
submit_btn.click(conversation,
inputs=[qa_chain, msg, chatbot],
outputs=[qa_chain, msg, chatbot,
doc_source1, source1_page,
doc_source2, source2_page,
doc_source3, source3_page,
doc_source4, source4_page,
doc_source5, source5_page], queue=False)
clear_btn.click(
lambda: [None, "", 0, "", 0, "", 0, "", 0, "", 0],
inputs=None,
outputs=[
chatbot,
doc_source1, source1_page,
doc_source2, source2_page,
doc_source3, source3_page,
doc_source4, source4_page,
doc_source5, source5_page
],
queue=False
)
demo.queue().launch(debug=True)
if __name__ == "__main__":
demo()
|