File size: 13,118 Bytes
3ec9224
5be8df6
ebc9208
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
87a53c5
 
 
 
 
 
ebc9208
 
 
 
 
 
 
 
 
 
 
87a53c5
ebc9208
 
882bb4e
ebc9208
882bb4e
 
 
 
 
 
ebc9208
 
 
 
 
 
 
 
 
d0c3ad5
ebc9208
 
 
 
 
 
 
d0c3ad5
882bb4e
 
 
 
 
 
 
 
 
 
 
 
 
ebc9208
 
 
87a53c5
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
import gradio as gr
import os
from langchain_community.document_loaders import PyPDFLoader
from langchain.text_splitter import RecursiveCharacterTextSplitter
from langchain_community.vectorstores import Chroma
from langchain.chains import ConversationalRetrievalChain
from langchain_community.embeddings import HuggingFaceEmbeddings 
from langchain_community.llms import HuggingFaceEndpoint
from langchain.memory import ConversationBufferMemory
from pathlib import Path
import chromadb
from unidecode import unidecode
import re

# List of available LLM models
list_llm = [
    "mistralai/Mistral-7B-Instruct-v0.2", "mistralai/Mixtral-8x7B-Instruct-v0.1",
    "google/gemma-7b-it", "google/gemma-2b-it",
    "HuggingFaceH4/zephyr-7b-beta", "HuggingFaceH4/zephyr-7b-gemma-v0.1",
    "meta-llama/Llama-2-7b-chat-hf", "microsoft/phi-2",
    "TinyLlama/TinyLlama-1.1B-Chat-v1.0", "mosaicml/mpt-7b-instruct",
    "tiiuae/falcon-7b-instruct", "google/flan-t5-xxl"
]
list_llm_simple = [os.path.basename(llm) for llm in list_llm]

def load_doc(list_file_path, chunk_size, chunk_overlap):
    loaders = [PyPDFLoader(x) for x in list_file_path]
    pages = []
    for loader in loaders:
        pages.extend(loader.load())
    text_splitter = RecursiveCharacterTextSplitter(
        chunk_size=chunk_size,
        chunk_overlap=chunk_overlap
    )
    doc_splits = text_splitter.split_documents(pages)
    return doc_splits

def create_db(splits, collection_name):
    embedding = HuggingFaceEmbeddings()
    new_client = chromadb.EphemeralClient()
    vectordb = Chroma.from_documents(
        documents=splits,
        embedding=embedding,
        client=new_client,
        collection_name=collection_name
    )
    return vectordb

def initialize_llmchain(llm_model, temperature, max_tokens, top_k, vector_db, progress=gr.Progress()):
    progress(0.5, desc="Initializing HF Hub...")
    llm = HuggingFaceEndpoint(
        repo_id=llm_model,
        temperature=temperature,
        max_new_tokens=max_tokens,
        top_k=top_k
    )
    
    progress(0.75, desc="Defining buffer memory...")
    memory = ConversationBufferMemory(
        memory_key="chat_history",
        output_key='answer',
        return_messages=True
    )
    retriever = vector_db.as_retriever(search_kwargs={'k': 5})  # Increased from 3 to 5
    progress(0.8, desc="Defining retrieval chain...")
    qa_chain = ConversationalRetrievalChain.from_llm(
        llm,
        retriever=retriever,
        chain_type="stuff", 
        memory=memory,
        return_source_documents=True,
        verbose=False,
    )
    progress(0.9, desc="Done!")
    return qa_chain

def create_collection_name(filepath):
    collection_name = Path(filepath).stem
    collection_name = collection_name.replace(" ", "-")
    collection_name = unidecode(collection_name)
    collection_name = re.sub('[^A-Za-z0-9]+', '-', collection_name)
    collection_name = collection_name[:50]
    if len(collection_name) < 3:
        collection_name = collection_name + 'xyz'
    if not collection_name[0].isalnum():
        collection_name = 'A' + collection_name[1:]
    if not collection_name[-1].isalnum():
        collection_name = collection_name[:-1] + 'Z'
    return collection_name

def initialize_database(list_file_obj, chunk_size, chunk_overlap, progress=gr.Progress()):
    list_file_path = [x.name for x in list_file_obj if x is not None]
    progress(0.1, desc="Creating collection...")
    collection_name = create_collection_name(list_file_path[0])
    progress(0.25, desc="Loading documents...")
    doc_splits = load_doc(list_file_path, chunk_size, chunk_overlap)
    
    progress(0.5, desc="Generating vector database...")
    vector_db = create_db(doc_splits, collection_name)
    progress(0.9, desc="Done!")

    return vector_db, collection_name, "Completed!"

def initialize_LLM(llm_option, llm_temperature, max_tokens, top_k, vector_db, progress=gr.Progress()):
    llm_name = list_llm[llm_option]
    qa_chain = initialize_llmchain(llm_name, llm_temperature, max_tokens, top_k, vector_db, progress)
    return qa_chain, "Completed!"

def format_chat_history(message, chat_history):
    formatted_chat_history = []
    for user_message, bot_message in chat_history:
        formatted_chat_history.append(f"User: {user_message}")
        formatted_chat_history.append(f"Assistant: {bot_message}")
    return formatted_chat_history

def conversation(qa_chain, message, history):
    formatted_chat_history = format_chat_history(message, history)
    response = qa_chain({"question": message, "chat_history": formatted_chat_history})
    response_answer = response["answer"]
    if response_answer.find("Helpful Answer:") != -1:
        response_answer = response_answer.split("Helpful Answer:")[-1]
    response_sources = response["source_documents"]
    
    source_info = []
    for i in range(min(5, len(response_sources))):  # Increased from 3 to 5
        source = response_sources[i]
        source_info.append({
            'content': source.page_content.strip(),
            'page': source.metadata["page"] + 1
        })
    
    new_history = history + [(message, response_answer)]
    return qa_chain, gr.update(value=""), new_history, *[info['content'] for info in source_info], *[info['page'] for info in source_info]

# The rest of the code (demo function and UI setup) remains largely the same,
# but update the outputs of the conversation function to handle 5 sources instead of 3.
def upload_file(file_obj):
    list_file_path = []
    for idx, file in enumerate(file_obj):
        file_path = file_obj.name
        list_file_path.append(file_path)
    print(file_path)
    # initialize_database(file_path, progress)
    return list_file_path

def demo():
    with gr.Blocks(theme="base") as demo:
        vector_db = gr.State()
        qa_chain = gr.State()
        collection_name = gr.State()
        
        gr.Markdown(
        """<center><h2>Creatore di chatbot basato su PDF</center></h2>
        <h3>Potete fare domande su i vostri documenti PDF</h3>""")
        
        gr.Markdown(
        """<b>Nota:</b> Questo assistente IA, utilizzando Langchain e modelli LLM open source, esegue generazione aumentata da recupero (RAG) dai vostri documenti PDF. \
        L'interfaccia utente esplicitamente mostra i passaggi multipli per aiutare a comprendere il flusso di lavoro RAG. 
        Questo chatbot tiene conto delle domande passate nel generare le risposte (tramite memoria conversazionale), e include riferimenti ai documenti per scopi di chiarezza.<br>
        <br><b>Avviso:</b> Questo spazio utilizza l'hardware di base CPU gratuito da Hugging Face. Alcuni passaggi e modelli LLM usati qui sotto (endpoint di inferenza gratuiti) possono richiedere del tempo per generare una risposta.
        """)
        
        with gr.Tab("Step 1 - Carica PDFs"):
            with gr.Row():
                document = gr.Files(height=100, file_count="multiple", file_types=["pdf"], interactive=True, label="Upload your PDF documents (single or multiple)")
                # upload_btn = gr.UploadButton("Loading document...", height=100, file_count="multiple", file_types=["pdf"], scale=1)
        
        with gr.Tab("Step 2 - Processa i documenti"):
            with gr.Row():
                db_btn = gr.Radio(["ChromaDB"], label="Vector database type", value = "ChromaDB", type="index", info="Choose your vector database")
            with gr.Accordion("Opzioni Avanzate - Document text splitter", open=False):
                with gr.Row():
                    slider_chunk_size = gr.Slider(minimum = 100, maximum = 1000, value=1000, step=20, label="Chunk size", info="Chunk size", interactive=True)
                with gr.Row():
                    slider_chunk_overlap = gr.Slider(minimum = 10, maximum = 200, value=100, step=10, label="Chunk overlap", info="Chunk overlap", interactive=True)
            with gr.Row():
                db_progress = gr.Textbox(label="Vector database initialization", value="None")
            with gr.Row():
                db_btn = gr.Button("Genera vector database")
            
        with gr.Tab("Step 3 - Inizializza QA chain"):
            with gr.Row():
                llm_btn = gr.Radio(list_llm_simple, \
                    label="LLM models", value = list_llm_simple[5], type="index", info="Scegli il tuo modello LLM")
            with gr.Accordion("Advanced options - LLM model", open=False):
                with gr.Row():
                    slider_temperature = gr.Slider(minimum = 0.01, maximum = 1.0, value=0.3, step=0.1, label="Temperature", info="Model temperature", interactive=True)
                with gr.Row():
                    slider_maxtokens = gr.Slider(minimum = 224, maximum = 4096, value=1024, step=32, label="Max Tokens", info="Model max tokens", interactive=True)
                with gr.Row():
                    slider_topk = gr.Slider(minimum = 1, maximum = 10, value=3, step=1, label="top-k samples", info="Model top-k samples", interactive=True)
            with gr.Row():
                language_btn = gr.Radio(["Italian", "English"], label="Linua", value="Italian", type="index", info="Seleziona la lingua per il chatbot")
            with gr.Row():
                llm_progress = gr.Textbox(value="None",label="QA chain initialization")
            with gr.Row():
                qachain_btn = gr.Button("Inizializza Question Answering chain")
        
        with gr.Tab("Passo 4 - Chatbot"):
            chatbot = gr.Chatbot(height=300)
            with gr.Accordion("Opzioni avanzate - Riferimenti ai documenti", open=False):
                with gr.Row():
                    doc_source1 = gr.Textbox(label="Riferimento 1", lines=2, container=True, scale=20)
                    source1_page = gr.Number(label="Pagina", scale=1)
                with gr.Row():
                    doc_source2 = gr.Textbox(label="Riferimento 2", lines=2, container=True, scale=20)
                    source2_page = gr.Number(label="Pagina", scale=1)
                with gr.Row():
                    doc_source3 = gr.Textbox(label="Riferimento 3", lines=2, container=True, scale=20)
                    source3_page = gr.Number(label="Pagina", scale=1)
                with gr.Row():
                    doc_source4 = gr.Textbox(label="Riferimento 4", lines=2, container=True, scale=20)
                    source4_page = gr.Number(label="Pagina", scale=1)
                with gr.Row():
                    doc_source5 = gr.Textbox(label="Riferimento 5", lines=2, container=True, scale=20)
                    source5_page = gr.Number(label="Pagina", scale=1)
            with gr.Row():
                msg = gr.Textbox(placeholder="Inserisci messaggio (es. 'Di cosa tratta questo documento?')", container=True)
            with gr.Row():
                submit_btn = gr.Button("Invia messaggio")
                clear_btn = gr.ClearButton([msg, chatbot], value="Cancella conversazione")
           
        # Preprocessing events
        #upload_btn.upload(upload_file, inputs=[upload_btn], outputs=[document])
        db_btn.click(initialize_database, \
            inputs=[document, slider_chunk_size, slider_chunk_overlap], \
            outputs=[vector_db, collection_name, db_progress])

        qachain_btn.click(initialize_LLM, \
            inputs=[llm_btn, slider_temperature, slider_maxtokens, slider_topk, vector_db], \
            outputs=[qa_chain, llm_progress]).then(lambda:[None, "", 0, "", 0, "", 0, "", 0, "", 0], \
            inputs=None, \
            outputs=[chatbot, 
                     doc_source1, source1_page, 
                     doc_source2, source2_page, 
                     doc_source3, source3_page,
                     doc_source4, source4_page,
                     doc_source5, source5_page], queue=False)

        # Chatbot events
        msg.submit(conversation, \
            inputs=[qa_chain, msg, chatbot], \
            outputs=[qa_chain, msg, chatbot, \
                     doc_source1, source1_page, 
                     doc_source2, source2_page, 
                     doc_source3, source3_page,
                     doc_source4, source4_page,
                     doc_source5, source5_page], queue=False)
        submit_btn.click(conversation, 
            inputs=[qa_chain, msg, chatbot], 
            outputs=[qa_chain, msg, chatbot, 
                     doc_source1, source1_page, 
                     doc_source2, source2_page, 
                     doc_source3, source3_page,
                     doc_source4, source4_page,
                     doc_source5, source5_page], queue=False)
        clear_btn.click(
            lambda: [None, "", 0, "", 0, "", 0, "", 0, "", 0],
            inputs=None,
            outputs=[
                chatbot,
                doc_source1, source1_page,
                doc_source2, source2_page,
                doc_source3, source3_page,
                doc_source4, source4_page,
                doc_source5, source5_page
            ],
            queue=False
        )
    demo.queue().launch(debug=True)

if __name__ == "__main__":
    demo()