Spaces:
Running
on
CPU Upgrade
Running
on
CPU Upgrade
File size: 7,370 Bytes
b9f8bd7 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 |
import gradio as gr
import json
from gliner2 import GLiNER2
from huggingface_hub import login
import os
# Get API key from environment variable
hf_token = os.getenv("HF_TOKEN")
# Authenticate with Hugging Face
login(hf_token)
# βββ Load model once βββ
model = GLiNER2.from_pretrained("fastino/gliner2-base-0207")
def run_ner(text, types_csv, descs):
types = [t.strip() for t in types_csv.split(",") if t.strip()]
desc_map = {k: v for line in descs.split("\n") if ":" in line for k,v in [line.split(":",1)]}
inp = desc_map if desc_map else types
res = model.extract_entities(text=text, entity_types=inp, include_confidence=True)
return model.pretty_print_results(res, include_confidence=True)
def run_class(text, task, labels_csv, descs, multi):
labels = [l.strip() for l in labels_csv.split(",") if l.strip()]
desc_map = {k: v for line in descs.split("\n") if ":" in line for k,v in [line.split(":",1)]}
inp = desc_map if desc_map else labels
tasks = {
task: {
"labels": list(inp.keys()) if isinstance(inp,dict) else inp,
"multi_label": multi,
**({"label_descriptions": inp} if isinstance(inp,dict) else {})
}
}
res = model.classify_text(text=text, tasks=tasks, include_confidence=True)
return model.pretty_print_results(res, include_confidence=True)
def run_struct(text, struct_json):
try:
cfg = json.loads(struct_json)
except json.JSONDecodeError as e:
return f"β Invalid JSON: {e}"
res = model.extract_json(text=text, structures=cfg, include_confidence=True)
return model.pretty_print_results(res, include_confidence=True)
# βββ Clean White Theme & Layout βββ
custom_css = """
body {
background: #ffffff !important;
font-family: 'Helvetica Neue', sans-serif;
color: #333333;
}
.gradio-container {
max-width: 600px;
padding: 0;
background: #ffffff;
}
header, .logo, .subtitle {
border: none !important;
box-shadow: none !important;
}
.gradio-container * {
box-shadow: none !important;
}
.card {
background: #ffffff;
padding: 15px;
}
label {
color: #444444;
font-weight: 600;
}
.gr-textbox textarea,
.gr-code,
.gr-dropdown,
.gr-checkbox,
.gr-button {
background: #ffffff !important;
box-shadow: none !important;
}
.accordion-button {
border: none !important;
box-shadow: none !important;
font-weight: 500;
}
.gr-button.primary {
background: #5b8def;
color: #ffffff;
}
"""
with gr.Blocks(theme=gr.themes.Base(), css=custom_css) as demo:
# Header
gr.HTML("""
<header style="text-align:center; padding:10px 0;">
<div class="logo" style="font-size:1.8rem; font-weight:700; color:#333333;">π― GLiNER2</div>
<div class="subtitle" style="font-size:0.85rem; color:#777777;">Compact β’ White Theme β’ Screenshot-Ready</div>
</header>
""")
with gr.Tabs():
# Structure Extraction Tab
with gr.TabItem("Hierarchical Structure Extraction"):
with gr.Row(elem_classes="card"):
with gr.Column(scale=2):
txt3 = gr.Textbox(
label="Input text", lines=3,
value=(
"The Acme Pro Laptop 15β features an Intel Core i7 processor, 16GB RAM, 512GB SSD, "
"and a 15.6-inch 4K display. Priced at $1,499, it offers Wi-Fi 6, Bluetooth 5.2, and "
"a backlit keyboard."
)
)
struct3 = gr.Code(
language="json", lines=7,
label = "Schema",
value=json.dumps({
"product": [
"name::str::Product name and model",
"price::str::Product cost",
"features::list::Key product features",
"category::[electronics|software|hardware]::str"
]
}, indent=2)
)
btn3 = gr.Button("Predict", variant="primary")
with gr.Column(scale=1):
out3 = gr.Code(language="json", lines=8, label="Output")
btn3.click(run_struct, [txt3, struct3], out3)
# NER Tab
with gr.TabItem("Named Entity Recognition"):
with gr.Row(elem_classes="card"):
with gr.Column(scale=2):
txt1 = gr.Textbox(
label="Text", lines=4,
value=(
"Dr. Alice Smith, Chief Data Scientist at OpenAI, spoke at the AI Summit "
"in San Francisco on June 12, 2025, about advancements in large-scale language "
"models, ethical AI guidelines, and real-world GPT-4 Turbo applications."
)
)
types1 = gr.Textbox(label="Types (csv)", value="person, title, organization, event, location, date, topic")
with gr.Accordion("Descriptions (opt)", open=False):
desc1 = gr.Textbox(lines=4, placeholder=(
"person: Full names\n"
"title: Roles\n"
"organization: Companies\n"
"event: Conferences\n"
"location: Cities\n"
"date: Temporal expressions"
))
btn1 = gr.Button("Predict", variant="primary")
with gr.Column(scale=1):
out1 = gr.Code(language="json", lines=8)
btn1.click(run_ner, [txt1, types1, desc1], out1)
# Classification Tab
with gr.TabItem("Text Classification"):
with gr.Row(elem_classes="card"):
with gr.Column(scale=2):
txt2 = gr.Textbox(
label="Text", lines=4,
value=(
"The Q2 2025 financial report shows a 15% revenue increase driven by cloud "
"services, offset by a 12% rise in R&D costs. Overall sentiment is cautiously "
"optimistic among stakeholders."
)
)
task2 = gr.Textbox(label="Task", value="financial_sentiment")
labs2 = gr.Textbox(label="Labels (csv)", value="positive, negative, neutral, mixed, uncertain")
with gr.Accordion("Label Descriptions (opt)", open=False):
desc2 = gr.Textbox(lines=3, placeholder=(
"positive: Favorable outcomes\n"
"negative: Concerns raised\n"
"neutral: Balanced reporting"
))
multi2 = gr.Checkbox(label="Multi-label?", value=True)
btn2 = gr.Button("Predict", variant="primary")
with gr.Column(scale=1):
out2 = gr.Code(language="json", lines=8)
btn2.click(run_class, [txt2, task2, labs2, desc2, multi2], out2)
demo.launch(share=False, width=600, height=300)
|