random-demo / app.py
urchade's picture
Update app.py
5c6553f verified
import gradio as gr
import json
from gliner2 import GLiNER2
from huggingface_hub import login
import os
# Authenticate with Hugging Face
hf_token = os.getenv("HF_TOKEN")
login(hf_token)
# Load model once
model = GLiNER2.from_pretrained("fastino/gliner2-base-0207")
def run_ner(text, types_csv, descs):
types = [t.strip() for t in types_csv.split(",") if t.strip()]
desc_map = {k: v for line in descs.split("\n") if ":" in line for k,v in [line.split(":",1)]}
inp = desc_map if desc_map else types
res = model.extract_entities(text=text, entity_types=inp, include_confidence=True)
return model.pretty_print_results(res, include_confidence=True)
def run_class(text, task, labels_csv, descs, multi):
labels = [l.strip() for l in labels_csv.split(",") if l.strip()]
desc_map = {k: v for line in descs.split("\n") if ":" in line for k,v in [line.split(":",1)]}
inp = desc_map if desc_map else labels
tasks = {
task: {
"labels": list(inp.keys()) if isinstance(inp,dict) else inp,
"multi_label": multi,
**({"label_descriptions": inp} if isinstance(inp,dict) else {})
}
}
res = model.classify_text(text=text, tasks=tasks, include_confidence=True)
return model.pretty_print_results(res, include_confidence=True)
def run_struct(text, struct_json):
try:
cfg = json.loads(struct_json)
except json.JSONDecodeError as e:
return f"❌ Invalid JSON: {e}"
res = model.extract_json(text=text, structures=cfg, include_confidence=True)
return model.pretty_print_results(res, include_confidence=True)
# Simplified CSS - uses default backgrounds
custom_css = """
@import url('https://fonts.googleapis.com/css2?family=Inter:wght@400;600;700&display=swap');
body {
font-family: 'Inter', sans-serif;
}
header.brand {
padding: 2rem 0;
text-align: center;
}
header.brand .logo {
font-size: 2rem;
font-weight: 700;
color: #4f46e5;
}
header.brand .subtitle {
margin-top: 0.2rem;
font-size: 0.9rem;
color: #6b7280;
}
.gr-button.primary {
background: #4f46e5 !important;
color: #fff !important;
border-radius: 0.5rem;
padding: 0.6rem 1.2rem;
}
"""
# Pre-made examples for each task (5 per tab)
ner_examples = [
[
"Barack Obama visited Berlin in July 2013.",
"person,location,date",
"person: Full name\nlocation: City\ndate: Month and year"
],
[
"Apple released the iPhone 13 on September 14, 2021.",
"organization,product,date",
"organization: Company name\nproduct: Device name\ndate: Full date"
],
[
"Elon Musk announced Tesla's new Roadster at the LA Auto Show.",
"person,organization,event,location",
"person: Full name\norganization: Company name\nevent: Conference or show\nlocation: Venue"
],
[
"The UEFA Champions League Final takes place in Istanbul this year.",
"event,location,date",
"event: Sports event\nlocation: City\ndate: Year"
],
[
"Microsoft acquired GitHub in 2018 for $7.5 billion.",
"organization,organization,date,price",
"organization: Company name\ndate: Year\nprice: Acquisition value"
]
]
class_examples = [
[
"The movie was a thrilling experience with stunning visuals.",
"sentiment",
"positive,negative,neutral",
"positive: Positive sentiment\nnegative: Negative sentiment\nneutral: Mixed or neutral",
False
],
[
"Our Q1 results were disappointing, with sales down 10%.",
"financial_sentiment",
"positive,negative,neutral",
"positive: Gains\nnegative: Losses\nneutral: Flat",
False
],
[
"I love the new interface but dislike the slow loading time.",
"feedback",
"praise,complaint,suggestion",
"praise: Positive feedback\ncomplaint: Negative feedback\nsuggestion: Improvement ideas",
True
],
[
"The product meets expectations but could use more features.",
"review",
"positive,negative",
"positive: Meets expectations\nnegative: Lacking",
False
],
[
"Customer support was helpful, though response times were slow.",
"support_sentiment",
"positive,negative,neutral",
"positive: Helpful support\nnegative: Unhelpful support\nneutral: Mixed experiences",
True
]
]
struct_examples = [
[
"The iPad Pro comes with an M1 chip, 8GB RAM, 256GB storage, and a 12.9-inch display.",
json.dumps({
"device": [
"name::str::Model name",
"specs::list::Hardware specifications",
"price::str::Device cost"
]
}, indent=2)
],
[
"Plan: Write report (Due: May 10), Review code (Due: May 15), Deploy (Due: May 20)",
json.dumps({
"tasks": [
"title::str::Task title",
"due_date::str::Due date"
]
}, indent=2)
],
[
"Product: Coffee Mug; Price: $12; Features: ceramic, dishwasher-safe, 12oz capacity.",
json.dumps({
"product": [
"name::str::Product name",
"price::str::Product price",
"features::list::Product features"
]
}, indent=2)
],
[
"Event: AI Conference; Date: August 22, 2025; Location: Paris; Topics: ML, Ethics, Robotics.",
json.dumps({
"event": [
"name::str::Event name",
"date::str::Event date",
"location::str::Event location",
"topics::list::Covered topics"
]
}, indent=2)
],
[
"Recipe: Pancakes; Ingredients: flour, eggs, milk; Steps: mix, cook, serve.",
json.dumps({
"recipe": [
"title::str::Recipe title",
"ingredients::list::List of ingredients",
"steps::list::Preparation steps"
]
}, indent=2)
]
]
with gr.Blocks(theme=gr.themes.Soft(primary_hue="purple", secondary_hue="blue"), css=custom_css) as demo:
# Header
gr.HTML(
"""
<header class=\"brand\">
<div class=\"logo\">✨ GLiNER2</div>
</header>
"""
)
with gr.Tabs():
# NER Tab
with gr.TabItem("πŸ” Named Entity Recognition"):
with gr.Row(elem_classes="card"):
with gr.Column(scale=2):
txt1 = gr.Textbox(label="Input Text", lines=5)
types1 = gr.Textbox(label="Entity Types (CSV)")
with gr.Accordion("Optional Descriptions", open=False):
desc1 = gr.Textbox(lines=3)
btn1 = gr.Button("Extract Entities", variant="primary")
gr.Examples(examples=ner_examples, inputs=[txt1, types1, desc1], outputs=None, fn=lambda *args: None, cache_examples=False)
with gr.Column(scale=1):
out1 = gr.Code(language="json", label="Results", lines=8)
btn1.click(run_ner, inputs=[txt1, types1, desc1], outputs=out1)
# Classification Tab
with gr.TabItem("πŸ“ Text Classification"):
with gr.Row(elem_classes="card"):
with gr.Column(scale=2):
txt2 = gr.Textbox(label="Input Text", lines=5)
task2 = gr.Textbox(label="Task Name")
labs2 = gr.Textbox(label="Labels (CSV)")
with gr.Accordion("Optional Label Descriptions", open=False):
desc2 = gr.Textbox(lines=3)
multi2 = gr.Checkbox(label="Multi-label?")
btn2 = gr.Button("Classify Text", variant="primary")
gr.Examples(examples=class_examples, inputs=[txt2, task2, labs2, desc2, multi2], outputs=None, fn=lambda *args: None, cache_examples=False)
with gr.Column(scale=1):
out2 = gr.Code(language="json", label="Results", lines=8)
btn2.click(run_class, inputs=[txt2, task2, labs2, desc2, multi2], outputs=out2)
# Structure Extraction Tab
with gr.TabItem("πŸ“ Structure Extraction"):
with gr.Row(elem_classes="card"):
with gr.Column(scale=2):
txt3 = gr.Textbox(label="Input Text", lines=5)
struct3 = gr.Code(language="json", label="Schema (JSON)", lines=8)
btn3 = gr.Button("Extract Structure", variant="primary")
gr.Examples(examples=struct_examples, inputs=[txt3, struct3], outputs=None, fn=lambda *args: None, cache_examples=False)
with gr.Column(scale=1):
out3 = gr.Code(language="json", label="Results", lines=8)
btn3.click(run_struct, inputs=[txt3, struct3], outputs=out3)
demo.launch(share=False, width=800)