File size: 9,000 Bytes
b9f8bd7
 
 
 
 
 
 
e17c9d4
b9f8bd7
 
d4fe7c0
b9f8bd7
 
 
 
 
 
 
 
 
e17c9d4
b9f8bd7
 
 
 
 
 
 
 
 
 
 
 
 
 
e17c9d4
b9f8bd7
 
 
 
 
 
 
 
f6607f3
b9f8bd7
e17c9d4
f6607f3
e17c9d4
 
b9f8bd7
f6607f3
e17c9d4
 
 
b9f8bd7
f6607f3
e17c9d4
 
 
f6607f3
b9f8bd7
f6607f3
e17c9d4
 
 
f6607f3
b9f8bd7
f6607f3
b9f8bd7
f6607f3
e17c9d4
 
 
b9f8bd7
 
 
b9fed37
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
e17c9d4
b9f8bd7
e17c9d4
 
 
 
 
 
 
b9f8bd7
 
 
e17c9d4
d4fe7c0
b9f8bd7
b9fed37
 
e17c9d4
b9fed37
e17c9d4
b9fed37
b9f8bd7
e17c9d4
 
b9f8bd7
 
e17c9d4
d4fe7c0
b9f8bd7
b9fed37
 
 
e17c9d4
b9fed37
 
e17c9d4
b9fed37
b9f8bd7
e17c9d4
 
b9f8bd7
e17c9d4
 
d4fe7c0
e17c9d4
b9fed37
 
e17c9d4
b9fed37
e17c9d4
 
 
b9f8bd7
f6607f3
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
import gradio as gr
import json
from gliner2 import GLiNER2
from huggingface_hub import login
import os

# Authenticate with Hugging Face
hf_token = os.getenv("HF_TOKEN")
login(hf_token)

# Load model once
model = GLiNER2.from_pretrained("fastino/gliner2-base-0207")

def run_ner(text, types_csv, descs):
    types = [t.strip() for t in types_csv.split(",") if t.strip()]
    desc_map = {k: v for line in descs.split("\n") if ":" in line for k,v in [line.split(":",1)]}
    inp = desc_map if desc_map else types
    res = model.extract_entities(text=text, entity_types=inp, include_confidence=True)
    return model.pretty_print_results(res, include_confidence=True)


def run_class(text, task, labels_csv, descs, multi):
    labels = [l.strip() for l in labels_csv.split(",") if l.strip()]
    desc_map = {k: v for line in descs.split("\n") if ":" in line for k,v in [line.split(":",1)]}
    inp = desc_map if desc_map else labels
    tasks = {
        task: {
            "labels": list(inp.keys()) if isinstance(inp,dict) else inp,
            "multi_label": multi,
            **({"label_descriptions": inp} if isinstance(inp,dict) else {})
        }
    }
    res = model.classify_text(text=text, tasks=tasks, include_confidence=True)
    return model.pretty_print_results(res, include_confidence=True)


def run_struct(text, struct_json):
    try:
        cfg = json.loads(struct_json)
    except json.JSONDecodeError as e:
        return f"❌ Invalid JSON: {e}"
    res = model.extract_json(text=text, structures=cfg, include_confidence=True)
    return model.pretty_print_results(res, include_confidence=True)

# Simplified CSS - uses default backgrounds
custom_css = """
@import url('https://fonts.googleapis.com/css2?family=Inter:wght@400;600;700&display=swap');

body {
  font-family: 'Inter', sans-serif;
}

header.brand {
  padding: 2rem 0;
  text-align: center;
}

header.brand .logo {
  font-size: 2rem;
  font-weight: 700;
  color: #4f46e5;
}

header.brand .subtitle {
  margin-top: 0.2rem;
  font-size: 0.9rem;
  color: #6b7280;
}

.gr-button.primary {
  background: #4f46e5 !important;
  color: #fff !important;
  border-radius: 0.5rem;
  padding: 0.6rem 1.2rem;
}
"""

# Pre-made examples for each task (5 per tab)
ner_examples = [
    [
        "Barack Obama visited Berlin in July 2013.",
        "person,location,date",
        "person: Full name\nlocation: City\ndate: Month and year"
    ],
    [
        "Apple released the iPhone 13 on September 14, 2021.",
        "organization,product,date",
        "organization: Company name\nproduct: Device name\ndate: Full date"
    ],
    [
        "Elon Musk announced Tesla's new Roadster at the LA Auto Show.",
        "person,organization,event,location",
        "person: Full name\norganization: Company name\nevent: Conference or show\nlocation: Venue"
    ],
    [
        "The UEFA Champions League Final takes place in Istanbul this year.",
        "event,location,date",
        "event: Sports event\nlocation: City\ndate: Year"
    ],
    [
        "Microsoft acquired GitHub in 2018 for $7.5 billion.",
        "organization,organization,date,price",
        "organization: Company name\ndate: Year\nprice: Acquisition value"
    ]
]

class_examples = [
    [
        "The movie was a thrilling experience with stunning visuals.",
        "sentiment",
        "positive,negative,neutral",
        "positive: Positive sentiment\nnegative: Negative sentiment\nneutral: Mixed or neutral",
        False
    ],
    [
        "Our Q1 results were disappointing, with sales down 10%.",
        "financial_sentiment",
        "positive,negative,neutral",
        "positive: Gains\nnegative: Losses\nneutral: Flat",
        False
    ],
    [
        "I love the new interface but dislike the slow loading time.",
        "feedback",
        "praise,complaint,suggestion",
        "praise: Positive feedback\ncomplaint: Negative feedback\nsuggestion: Improvement ideas",
        True
    ],
    [
        "The product meets expectations but could use more features.",
        "review",
        "positive,negative",
        "positive: Meets expectations\nnegative: Lacking",
        False
    ],
    [
        "Customer support was helpful, though response times were slow.",
        "support_sentiment",
        "positive,negative,neutral",
        "positive: Helpful support\nnegative: Unhelpful support\nneutral: Mixed experiences",
        True
    ]
]

struct_examples = [
    [
        "The iPad Pro comes with an M1 chip, 8GB RAM, 256GB storage, and a 12.9-inch display.",
        json.dumps({
            "device": [
                "name::str::Model name",
                "specs::list::Hardware specifications",
                "price::str::Device cost"
            ]
        }, indent=2)
    ],
    [
        "Plan: Write report (Due: May 10), Review code (Due: May 15), Deploy (Due: May 20)",
        json.dumps({
            "tasks": [
                "title::str::Task title",
                "due_date::str::Due date"
            ]
        }, indent=2)
    ],
    [
        "Product: Coffee Mug; Price: $12; Features: ceramic, dishwasher-safe, 12oz capacity.",
        json.dumps({
            "product": [
                "name::str::Product name",
                "price::str::Product price",
                "features::list::Product features"
            ]
        }, indent=2)
    ],
    [
        "Event: AI Conference; Date: August 22, 2025; Location: Paris; Topics: ML, Ethics, Robotics.",
        json.dumps({
            "event": [
                "name::str::Event name",
                "date::str::Event date",
                "location::str::Event location",
                "topics::list::Covered topics"
            ]
        }, indent=2)
    ],
    [
        "Recipe: Pancakes; Ingredients: flour, eggs, milk; Steps: mix, cook, serve.",
        json.dumps({
            "recipe": [
                "title::str::Recipe title",
                "ingredients::list::List of ingredients",
                "steps::list::Preparation steps"
            ]
        }, indent=2)
    ]
]

with gr.Blocks(theme=gr.themes.Soft(primary_hue="purple", secondary_hue="blue"), css=custom_css) as demo:
    # Header
    gr.HTML(
        """
        <header class=\"brand\">  
          <div class=\"logo\">✨ GLiNER2</div>  
        </header>
        """
    )

    with gr.Tabs():
        # NER Tab
        with gr.TabItem("πŸ” Named Entity Recognition"):
            with gr.Row(elem_classes="card"):
                with gr.Column(scale=2):
                    txt1 = gr.Textbox(label="Input Text", lines=5)
                    types1 = gr.Textbox(label="Entity Types (CSV)")
                    with gr.Accordion("Optional Descriptions", open=False):
                        desc1 = gr.Textbox(lines=3)
                    btn1 = gr.Button("Extract Entities", variant="primary")
                    gr.Examples(examples=ner_examples, inputs=[txt1, types1, desc1], outputs=None, fn=lambda *args: None, cache_examples=False)
                with gr.Column(scale=1):
                    out1 = gr.Code(language="json", label="Results", lines=8)
                btn1.click(run_ner, inputs=[txt1, types1, desc1], outputs=out1)

        # Classification Tab
        with gr.TabItem("πŸ“ Text Classification"):
            with gr.Row(elem_classes="card"):
                with gr.Column(scale=2):
                    txt2 = gr.Textbox(label="Input Text", lines=5)
                    task2 = gr.Textbox(label="Task Name")
                    labs2 = gr.Textbox(label="Labels (CSV)")
                    with gr.Accordion("Optional Label Descriptions", open=False):
                        desc2 = gr.Textbox(lines=3)
                    multi2 = gr.Checkbox(label="Multi-label?")
                    btn2 = gr.Button("Classify Text", variant="primary")
                    gr.Examples(examples=class_examples, inputs=[txt2, task2, labs2, desc2, multi2], outputs=None, fn=lambda *args: None, cache_examples=False)
                with gr.Column(scale=1):
                    out2 = gr.Code(language="json", label="Results", lines=8)
                btn2.click(run_class, inputs=[txt2, task2, labs2, desc2, multi2], outputs=out2)

        # Structure Extraction Tab
        with gr.TabItem("πŸ“ Structure Extraction"):
            with gr.Row(elem_classes="card"):
                with gr.Column(scale=2):
                    txt3 = gr.Textbox(label="Input Text", lines=5)
                    struct3 = gr.Code(language="json", label="Schema (JSON)", lines=8)
                    btn3 = gr.Button("Extract Structure", variant="primary")
                    gr.Examples(examples=struct_examples, inputs=[txt3, struct3], outputs=None, fn=lambda *args: None, cache_examples=False)
                with gr.Column(scale=1):
                    out3 = gr.Code(language="json", label="Results", lines=8)
                btn3.click(run_struct, inputs=[txt3, struct3], outputs=out3)

    demo.launch(share=False, width=800)