Spaces:
Running
Running
File size: 10,433 Bytes
d8ef918 b3fa23a d8debf8 b1787bf d8debf8 a7e14dd b1787bf b3fa23a b1787bf cb79291 d8ef918 b3fa23a d8debf8 b3fa23a d8ef918 a7e14dd d8ef918 d26e4b8 a7e14dd d8ef918 b1787bf 447d2b4 d8ef918 b3fa23a d8ef918 b1787bf d8ef918 0fce594 d8ef918 a7e14dd d8ef918 a7e14dd 0fce594 d8ef918 a7e14dd d8ef918 a7e14dd d8ef918 b1787bf a7e14dd b1787bf d8ef918 b1787bf a7e14dd b1787bf a7e14dd b1787bf a7e14dd b1787bf d8debf8 b3fa23a b1787bf b3fa23a b1787bf a7e14dd d2b23ee b3fa23a b1787bf d8debf8 b1787bf d8debf8 b3fa23a d8debf8 b3fa23a d8debf8 b3fa23a 1d1c330 b1787bf 1d1c330 d8debf8 b3fa23a d8debf8 b3fa23a 666723c b3fa23a d8ef918 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 |
# app.py
import os
import logging
import asyncio
import nest_asyncio
from datetime import datetime
import uuid
import aiohttp
import gradio as gr
import requests
import xml.etree.ElementTree as ET
import json
from langfuse.llama_index import LlamaIndexInstrumentor
from llama_index.tools.duckduckgo import DuckDuckGoSearchToolSpec
from llama_index.tools.weather import OpenWeatherMapToolSpec
from llama_index.tools.playwright import PlaywrightToolSpec
from llama_index.core.tools import FunctionTool
from llama_index.core.agent.workflow import AgentWorkflow
from llama_index.core.workflow import Context
from llama_index.llms.huggingface_api import HuggingFaceInferenceAPI
from llama_index.core.memory import ChatMemoryBuffer
from llama_index.readers.web import RssReader, SimpleWebPageReader
from llama_index.core import SummaryIndex
# import subprocess
# subprocess.run(["playwright", "install"])
# allow nested loops in Spaces
nest_asyncio.apply()
# --- Llangfuse ---
instrumentor = LlamaIndexInstrumentor(
public_key=os.environ.get("LANGFUSE_PUBLIC_KEY"),
secret_key=os.environ.get("LANGFUSE_SECRET_KEY"),
host=os.environ.get("LANGFUSE_HOST"),
)
instrumentor.start()
# --- Secrets via env vars ---
HF_TOKEN = os.getenv("HF_TOKEN")
# OPENAI_API_KEY = os.getenv("OPENAI_API_KEY")
OPENWEATHERMAP_KEY = os.getenv("OPENWEATHERMAP_API_KEY")
SERPER_API_KEY = os.getenv("SERPER_API_KEY")
# --- LLMs ---
llm = HuggingFaceInferenceAPI(
model_name="Qwen/Qwen2.5-Coder-32B-Instruct",
token=HF_TOKEN,
task="conversational"
)
memory = ChatMemoryBuffer.from_defaults(token_limit=8192)
today_str = datetime.now().strftime("%B %d, %Y")
ANON_USER_ID = os.environ.get("ANON_USER_ID", uuid.uuid4().hex)
# # OpenAI for pure function-calling
# openai_llm = OpenAI(
# model="gpt-4o",
# api_key=OPENAI_API_KEY,
# temperature=0.0,
# streaming=False,
# )
# --- Tools Setup ---
# DuckDuckGo
# duck_spec = DuckDuckGoSearchToolSpec()
# search_tool = FunctionTool.from_defaults(duck_spec.duckduckgo_full_search)
# Weather
openweather_api_key=OPENWEATHERMAP_KEY
weather_tool_spec = OpenWeatherMapToolSpec(key=openweather_api_key)
weather_tool = FunctionTool.from_defaults(
weather_tool_spec.weather_at_location,
name="current_weather",
description="Get the current weather at a specific location (city, country)."
)
forecast_tool = FunctionTool.from_defaults(
weather_tool_spec.forecast_tommorrow_at_location,
name="weather_forecast",
description="Get tomorrow's weather forecast for a specific location (city, country)."
)
# Playwright (synchronous start)
# async def _start_browser():
# return await PlaywrightToolSpec.create_async_playwright_browser(headless=True)
# browser = asyncio.get_event_loop().run_until_complete(_start_browser())
# playwright_tool_spec = PlaywrightToolSpec.from_async_browser(browser)
# navigate_tool = FunctionTool.from_defaults(
# playwright_tool_spec.navigate_to,
# name="web_navigate",
# description="Navigate to a specific URL."
# )
# extract_text_tool = FunctionTool.from_defaults(
# playwright_tool_spec.extract_text,
# name="web_extract_text",
# description="Extract all text from the current page."
# )
# extract_links_tool = FunctionTool.from_defaults(
# playwright_tool_spec.extract_hyperlinks,
# name="web_extract_links",
# description="Extract all hyperlinks from the current page."
# )
# Google News RSS
# def fetch_google_news_rss():
# docs = RssReader(html_to_text=True).load_data(["https://news.google.com/rss"])
# return [{"title":d.metadata.get("title",""), "url":d.metadata.get("link","")} for d in docs]
# -----------------------------
# Google News RSS
# -----------------------------
def fetch_news_headlines() -> str:
"""Fetches the latest news from Google News RSS feed.
Returns:
A string containing the latest news articles from Google News, or an error message if the request fails.
"""
url = "https://news.google.com/rss"
try:
response = requests.get(url)
response.raise_for_status()
# Parse the XML content
root = ET.fromstring(response.content)
# Format the news articles into a readable string
formatted_news = []
for item in root.findall('.//item'):
title = item.find('title').text if item.find('title') is not None else 'N/A'
link = item.find('link').text if item.find('link') is not None else 'N/A'
pub_date = item.find('pubDate').text if item.find('pubDate') is not None else 'N/A'
description = item.find('description').text if item.find('description') is not None else 'N/A'
formatted_news.append(f"Title: {title}")
formatted_news.append(f"Published: {pub_date}")
formatted_news.append(f"Link: {link}")
formatted_news.append(f"Description: {description}")
formatted_news.append("---")
return "\n".join(formatted_news) if formatted_news else "No news articles found."
except requests.exceptions.RequestException as e:
return f"Error fetching news: {str(e)}"
except Exception as e:
return f"An unexpected error occurred: {str(e)}"
google_rss_tool = FunctionTool.from_defaults(
fn=fetch_news_headlines,
name="fetch_google_news_rss",
description="Fetch latest headlines."
)
# -----------------------------
# SERPER API
# -----------------------------
def fetch_news_topics(query: str) -> str:
"""Fetches news articles about a specific topic using the Serper API.
Args:
query: The topic to search for news about.
Returns:
A string containing the news articles found, or an error message if the request fails.
"""
url = "https://google.serper.dev/news"
payload = json.dumps({
"q": query
})
headers = {
'X-API-KEY': os.getenv('SERPER_API'),
'Content-Type': 'application/json'
}
try:
response = requests.post(url, headers=headers, data=payload)
response.raise_for_status()
news_data = response.json()
# Format the news articles into a readable string
formatted_news = []
for article in news_data.get('news', []):
formatted_news.append(f"Title: {article.get('title', 'N/A')}")
formatted_news.append(f"Source: {article.get('source', 'N/A')}")
formatted_news.append(f"Link: {article.get('link', 'N/A')}")
formatted_news.append(f"Snippet: {article.get('snippet', 'N/A')}")
formatted_news.append("---")
return "\n".join(formatted_news) if formatted_news else "No news articles found."
except requests.exceptions.RequestException as e:
return f"Error fetching news: {str(e)}"
except Exception as e:
return f"An unexpected error occurred: {str(e)}"
serper_news_tool = FunctionTool.from_defaults(
fetch_news_topics,
name="fetch_news_from_serper",
description="Fetch news articles on a specific topic."
)
# -----------------------------
# WEB PAGE READER
# -----------------------------
def summarize_webpage(url: str) -> str:
"""Fetches and summarizes the content of a web page."""
try:
# NOTE: the html_to_text=True option requires html2text to be installed
documents = SimpleWebPageReader(html_to_text=True).load_data([url])
if not documents:
return "No content could be loaded from the provided URL."
index = SummaryIndex.from_documents(documents)
query_engine = index.as_query_engine()
response = query_engine.query("Summarize the main points of this page.")
return str(response)
except Exception as e:
return f"An error occurred while summarizing the web page: {str(e)}"
webpage_reader_tool = FunctionTool.from_defaults(
summarize_webpage,
name="summarize_webpage",
description="Read and summarize the main points of a web page given its URL."
)
# Create the agent workflow
tools = [
#search_tool,
#navigate_tool,
#extract_text_tool,
#extract_links_tool,
weather_tool,
forecast_tool,
google_rss_tool,
serper_news_tool,
webpage_reader_tool,
]
web_agent = AgentWorkflow.from_tools_or_functions(tools, llm=llm)
ctx = Context(web_agent)
# Async helper to run agent queries
def run_query_sync(query: str):
"""Helper to run async agent.run in sync context."""
return asyncio.get_event_loop().run_until_complete(
web_agent.run(query, ctx=ctx)
)
async def run_query(query: str):
trace_id = f"agent-run-{uuid.uuid4().hex}"
try:
with instrumentor.observe(
trace_id=trace_id,
session_id="web-agent-session",
user_id=ANON_USER_ID,
):
return await web_agent.run(query, ctx=ctx)
finally:
instrumentor.flush()
# Gradio interface function
async def gradio_query(user_input, chat_history=None):
history = chat_history or []
history.append({"role": "user", "content": user_input})
result = await run_query(user_input)
text = result.response if isinstance(result.response, str) else str(result.response)
history.append({"role": "assistant", "content": text})
return history, history
# Build and launch Gradio app
grb = gr.Blocks()
with grb:
gr.Markdown("## Perspicacity")
gr.Markdown(
"This bot can check the news, tell you the weather, and even browse websites to answer follow-up questions — all powered by a team of tiny AI tools working behind the scenes.\n\n"
"🧪 Built for fun during the [AI Agents course](https://huggingface.co/learn/agents-course/unit0/introduction) — it's just a demo to show what agents can do. \n"
"🙌 Got ideas or improvements? PRs welcome! \n\n"
"👉 _Try asking “What’s the weather in Montreal?” or “What’s in the news today?”_"
)
chatbot = gr.Chatbot(type="messages")
txt = gr.Textbox(placeholder="Ask me anything...", show_label=False)
txt.submit(
gradio_query,
inputs=[txt, chatbot],
outputs=[chatbot, chatbot] # first for display, second for state
)
gr.Button("Send").click(gradio_query, [txt, chatbot], [chatbot, chatbot])
if __name__ == "__main__":
grb.launch() |