File size: 10,433 Bytes
d8ef918
b3fa23a
 
 
d8debf8
 
 
 
 
b1787bf
 
 
d8debf8
 
 
 
 
 
 
 
 
a7e14dd
b1787bf
 
b3fa23a
b1787bf
 
cb79291
d8ef918
 
 
 
b3fa23a
 
 
d8debf8
b3fa23a
 
 
d8ef918
 
 
 
 
a7e14dd
d8ef918
d26e4b8
a7e14dd
d8ef918
b1787bf
447d2b4
d8ef918
 
b3fa23a
 
 
d8ef918
 
 
 
 
 
 
 
 
 
b1787bf
 
d8ef918
 
 
 
0fce594
d8ef918
a7e14dd
d8ef918
a7e14dd
0fce594
d8ef918
a7e14dd
d8ef918
a7e14dd
 
d8ef918
b1787bf
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
a7e14dd
b1787bf
d8ef918
b1787bf
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
a7e14dd
b1787bf
a7e14dd
b1787bf
a7e14dd
b1787bf
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
d8debf8
b3fa23a
b1787bf
b3fa23a
b1787bf
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
a7e14dd
d2b23ee
b3fa23a
 
b1787bf
 
 
 
d8debf8
 
 
 
b1787bf
d8debf8
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
b3fa23a
 
 
d8debf8
 
b3fa23a
d8debf8
 
 
b3fa23a
 
 
 
1d1c330
 
b1787bf
1d1c330
 
 
 
d8debf8
b3fa23a
d8debf8
 
 
 
 
b3fa23a
666723c
b3fa23a
d8ef918
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
# app.py
import os
import logging
import asyncio
import nest_asyncio
from datetime import datetime
import uuid
import aiohttp
import gradio as gr
import requests
import xml.etree.ElementTree as ET
import json

from langfuse.llama_index import LlamaIndexInstrumentor
from llama_index.tools.duckduckgo import DuckDuckGoSearchToolSpec
from llama_index.tools.weather import OpenWeatherMapToolSpec
from llama_index.tools.playwright import PlaywrightToolSpec
from llama_index.core.tools import FunctionTool
from llama_index.core.agent.workflow import AgentWorkflow
from llama_index.core.workflow import Context
from llama_index.llms.huggingface_api import HuggingFaceInferenceAPI
from llama_index.core.memory import ChatMemoryBuffer
from llama_index.readers.web import RssReader, SimpleWebPageReader
from llama_index.core import SummaryIndex

# import subprocess
# subprocess.run(["playwright", "install"])

# allow nested loops in Spaces
nest_asyncio.apply()

# --- Llangfuse ---
instrumentor = LlamaIndexInstrumentor(
    public_key=os.environ.get("LANGFUSE_PUBLIC_KEY"),
    secret_key=os.environ.get("LANGFUSE_SECRET_KEY"),
    host=os.environ.get("LANGFUSE_HOST"),
)
instrumentor.start()

# --- Secrets via env vars ---
HF_TOKEN            = os.getenv("HF_TOKEN")
# OPENAI_API_KEY      = os.getenv("OPENAI_API_KEY")
OPENWEATHERMAP_KEY  = os.getenv("OPENWEATHERMAP_API_KEY")
SERPER_API_KEY      = os.getenv("SERPER_API_KEY")

# --- LLMs ---
llm = HuggingFaceInferenceAPI(
    model_name="Qwen/Qwen2.5-Coder-32B-Instruct",
    token=HF_TOKEN, 
    task="conversational"
)

memory = ChatMemoryBuffer.from_defaults(token_limit=8192)
today_str = datetime.now().strftime("%B %d, %Y")
ANON_USER_ID = os.environ.get("ANON_USER_ID", uuid.uuid4().hex)

# # OpenAI for pure function-calling
# openai_llm = OpenAI(
#     model="gpt-4o",
#     api_key=OPENAI_API_KEY,
#     temperature=0.0,
#     streaming=False,
# )

# --- Tools Setup ---
# DuckDuckGo
# duck_spec = DuckDuckGoSearchToolSpec()
# search_tool = FunctionTool.from_defaults(duck_spec.duckduckgo_full_search)

# Weather
openweather_api_key=OPENWEATHERMAP_KEY
weather_tool_spec = OpenWeatherMapToolSpec(key=openweather_api_key)
weather_tool = FunctionTool.from_defaults(
    weather_tool_spec.weather_at_location,
    name="current_weather",
    description="Get the current weather at a specific location (city, country)."
)
forecast_tool = FunctionTool.from_defaults(
    weather_tool_spec.forecast_tommorrow_at_location,
    name="weather_forecast",
    description="Get tomorrow's weather forecast for a specific location (city, country)."
)

# Playwright (synchronous start)
# async def _start_browser():
#     return await PlaywrightToolSpec.create_async_playwright_browser(headless=True)
# browser = asyncio.get_event_loop().run_until_complete(_start_browser())
# playwright_tool_spec = PlaywrightToolSpec.from_async_browser(browser)

# navigate_tool = FunctionTool.from_defaults(
#     playwright_tool_spec.navigate_to,
#     name="web_navigate",
#     description="Navigate to a specific URL."
# )
# extract_text_tool = FunctionTool.from_defaults(
#     playwright_tool_spec.extract_text,
#     name="web_extract_text",
#     description="Extract all text from the current page."
# )
# extract_links_tool = FunctionTool.from_defaults(
#     playwright_tool_spec.extract_hyperlinks,
#     name="web_extract_links",
#     description="Extract all hyperlinks from the current page."
# )

# Google News RSS
# def fetch_google_news_rss():
#     docs = RssReader(html_to_text=True).load_data(["https://news.google.com/rss"])
#     return [{"title":d.metadata.get("title",""), "url":d.metadata.get("link","")} for d in docs]

# -----------------------------
# Google News RSS
# -----------------------------

def fetch_news_headlines() -> str:
    """Fetches the latest news from Google News RSS feed.
    
    Returns:
        A string containing the latest news articles from Google News, or an error message if the request fails.
    """
    url = "https://news.google.com/rss"
    
    try:
        response = requests.get(url)
        response.raise_for_status()
        
        # Parse the XML content
        root = ET.fromstring(response.content)
        
        # Format the news articles into a readable string
        formatted_news = []
        for item in root.findall('.//item'):
            title = item.find('title').text if item.find('title') is not None else 'N/A'
            link = item.find('link').text if item.find('link') is not None else 'N/A'
            pub_date = item.find('pubDate').text if item.find('pubDate') is not None else 'N/A'
            description = item.find('description').text if item.find('description') is not None else 'N/A'
            
            formatted_news.append(f"Title: {title}")
            formatted_news.append(f"Published: {pub_date}")
            formatted_news.append(f"Link: {link}")
            formatted_news.append(f"Description: {description}")
            formatted_news.append("---")
        
        return "\n".join(formatted_news) if formatted_news else "No news articles found."
        
    except requests.exceptions.RequestException as e:
        return f"Error fetching news: {str(e)}"
    except Exception as e:
        return f"An unexpected error occurred: {str(e)}"

google_rss_tool = FunctionTool.from_defaults(
    fn=fetch_news_headlines,
    name="fetch_google_news_rss",
    description="Fetch latest headlines."
)
# -----------------------------
# SERPER API
# -----------------------------
def fetch_news_topics(query: str) -> str:
    """Fetches news articles about a specific topic using the Serper API.
    
    Args:
        query: The topic to search for news about.
        
    Returns:
        A string containing the news articles found, or an error message if the request fails.
    """
    url = "https://google.serper.dev/news"
    
    payload = json.dumps({
        "q": query
    })
    
    headers = {
        'X-API-KEY': os.getenv('SERPER_API'),
        'Content-Type': 'application/json'
    }
    
    try:
        response = requests.post(url, headers=headers, data=payload)
        response.raise_for_status()
        
        news_data = response.json()
        
        # Format the news articles into a readable string
        formatted_news = []
        for article in news_data.get('news', []):
            formatted_news.append(f"Title: {article.get('title', 'N/A')}")
            formatted_news.append(f"Source: {article.get('source', 'N/A')}")
            formatted_news.append(f"Link: {article.get('link', 'N/A')}")
            formatted_news.append(f"Snippet: {article.get('snippet', 'N/A')}")
            formatted_news.append("---")
        
        return "\n".join(formatted_news) if formatted_news else "No news articles found."
        
    except requests.exceptions.RequestException as e:
        return f"Error fetching news: {str(e)}"
    except Exception as e:
        return f"An unexpected error occurred: {str(e)}"

serper_news_tool = FunctionTool.from_defaults(
    fetch_news_topics,
    name="fetch_news_from_serper",
    description="Fetch news articles on a specific topic."
)

# -----------------------------
# WEB PAGE READER
# -----------------------------
def summarize_webpage(url: str) -> str:
    """Fetches and summarizes the content of a web page."""
    try:
        # NOTE: the html_to_text=True option requires html2text to be installed
        documents = SimpleWebPageReader(html_to_text=True).load_data([url])
        if not documents:
            return "No content could be loaded from the provided URL."
        index = SummaryIndex.from_documents(documents)
        query_engine = index.as_query_engine()
        response = query_engine.query("Summarize the main points of this page.")
        return str(response)
    except Exception as e:
        return f"An error occurred while summarizing the web page: {str(e)}"

webpage_reader_tool = FunctionTool.from_defaults(
    summarize_webpage,
    name="summarize_webpage",
    description="Read and summarize the main points of a web page given its URL."
)

# Create the agent workflow
tools = [
    #search_tool,
    #navigate_tool,
    #extract_text_tool,
    #extract_links_tool,
    weather_tool,
    forecast_tool,
    google_rss_tool,
    serper_news_tool,
    webpage_reader_tool,
]
web_agent = AgentWorkflow.from_tools_or_functions(tools, llm=llm)
ctx = Context(web_agent)

# Async helper to run agent queries
def run_query_sync(query: str):
    """Helper to run async agent.run in sync context."""
    return asyncio.get_event_loop().run_until_complete(
        web_agent.run(query, ctx=ctx)
    )

async def run_query(query: str):
    trace_id = f"agent-run-{uuid.uuid4().hex}"
    try:
        with instrumentor.observe(
            trace_id=trace_id,
            session_id="web-agent-session",
            user_id=ANON_USER_ID,
        ):
            return await web_agent.run(query, ctx=ctx)
    finally:
        instrumentor.flush()

# Gradio interface function
async def gradio_query(user_input, chat_history=None):
    history = chat_history or []
    history.append({"role": "user", "content": user_input})
    result = await run_query(user_input)
    text = result.response if isinstance(result.response, str) else str(result.response)
    history.append({"role": "assistant", "content": text})
    return history, history

# Build and launch Gradio app
grb = gr.Blocks()
with grb:
    gr.Markdown("## Perspicacity")
    gr.Markdown(
        "This bot can check the news, tell you the weather, and even browse websites to answer follow-up questions — all powered by a team of tiny AI tools working behind the scenes.\n\n"
        "🧪 Built for fun during the [AI Agents course](https://huggingface.co/learn/agents-course/unit0/introduction) — it's just a demo to show what agents can do.  \n"
        "🙌 Got ideas or improvements? PRs welcome!  \n\n"
        "👉 _Try asking “What’s the weather in Montreal?” or “What’s in the news today?”_"
    )
    chatbot = gr.Chatbot(type="messages")
    txt = gr.Textbox(placeholder="Ask me anything...", show_label=False)
    txt.submit(
    gradio_query, 
    inputs=[txt, chatbot], 
    outputs=[chatbot, chatbot]  # first for display, second for state
    )   
    gr.Button("Send").click(gradio_query, [txt, chatbot], [chatbot, chatbot])

if __name__ == "__main__":
    grb.launch()