File size: 47,207 Bytes
4790918
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
54b9d20
 
6045f26
 
4790918
 
 
 
 
 
 
 
 
 
 
 
54b9d20
 
 
 
 
4790918
 
54b9d20
 
 
4790918
54b9d20
 
 
 
 
4790918
54b9d20
4790918
54b9d20
 
 
 
 
 
 
 
 
 
4790918
54b9d20
 
 
 
 
 
 
 
 
 
 
 
 
 
 
4790918
54b9d20
 
 
 
 
 
 
4790918
54b9d20
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
4790918
54b9d20
4790918
 
54b9d20
 
 
 
 
 
 
 
 
 
4790918
54b9d20
 
 
 
 
4790918
54b9d20
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
4790918
54b9d20
 
 
 
 
4790918
54b9d20
4790918
54b9d20
 
 
 
 
 
4790918
54b9d20
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
4790918
54b9d20
 
 
 
 
4790918
 
 
54b9d20
 
 
 
 
 
 
 
 
 
 
 
4790918
54b9d20
 
 
 
 
 
 
 
4790918
54b9d20
 
 
 
 
 
 
 
 
 
 
 
4790918
54b9d20
 
 
 
 
 
 
 
4790918
54b9d20
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
4790918
 
54b9d20
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
4790918
54b9d20
 
4790918
54b9d20
 
 
 
 
 
 
 
 
 
 
 
 
4790918
54b9d20
4790918
54b9d20
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
4790918
 
54b9d20
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
4790918
54b9d20
 
 
 
 
4790918
 
54b9d20
4790918
54b9d20
 
 
 
 
 
4790918
54b9d20
 
4790918
 
54b9d20
 
 
4790918
 
 
54b9d20
 
 
 
 
4790918
54b9d20
 
 
 
 
 
 
 
 
 
 
 
 
4790918
54b9d20
 
4790918
54b9d20
 
6045f26
4790918
 
54b9d20
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
4790918
54b9d20
 
 
 
4790918
54b9d20
 
 
 
 
 
 
4790918
54b9d20
4790918
 
 
54b9d20
 
 
 
 
 
 
4790918
 
54b9d20
 
4790918
54b9d20
 
 
 
 
 
 
4790918
54b9d20
 
 
6045f26
 
54b9d20
 
 
 
 
 
 
 
6045f26
54b9d20
 
 
6045f26
 
4790918
 
54b9d20
4790918
54b9d20
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
6045f26
54b9d20
 
 
 
 
 
 
 
 
 
 
 
 
4790918
54b9d20
 
 
 
 
 
 
6045f26
 
 
54b9d20
 
 
 
 
 
 
 
 
 
6045f26
54b9d20
 
 
 
 
 
4790918
54b9d20
 
 
 
 
 
 
 
 
 
 
 
4790918
54b9d20
 
 
 
 
 
4790918
54b9d20
 
 
6045f26
 
54b9d20
 
 
6045f26
54b9d20
 
6045f26
 
54b9d20
6045f26
54b9d20
 
 
 
 
 
 
 
 
 
 
6045f26
 
54b9d20
 
6045f26
 
54b9d20
 
6045f26
54b9d20
 
 
 
 
6045f26
 
54b9d20
 
 
 
6045f26
4790918
6045f26
 
54b9d20
 
 
 
6045f26
54b9d20
 
 
 
 
 
 
 
 
 
 
6045f26
 
54b9d20
 
 
 
 
 
 
 
 
6045f26
 
54b9d20
 
 
 
 
 
 
 
 
 
 
 
 
 
6045f26
54b9d20
 
 
 
 
 
6045f26
54b9d20
 
 
 
 
 
 
 
 
 
 
6045f26
 
54b9d20
 
6045f26
54b9d20
 
6045f26
54b9d20
 
 
 
 
 
6045f26
 
 
54b9d20
 
 
 
 
 
 
 
6045f26
 
 
54b9d20
 
6045f26
 
4790918
6045f26
 
54b9d20
 
 
 
 
 
 
 
6045f26
 
 
54b9d20
 
6045f26
54b9d20
 
 
 
 
 
 
 
 
 
6045f26
54b9d20
 
 
6045f26
54b9d20
 
 
4790918
54b9d20
 
 
 
6045f26
4790918
6045f26
54b9d20
 
 
6045f26
 
 
 
54b9d20
 
 
 
 
 
 
 
 
 
 
 
 
6045f26
 
 
54b9d20
 
 
6045f26
54b9d20
 
 
6045f26
54b9d20
 
 
4790918
6045f26
 
54b9d20
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
6045f26
 
54b9d20
 
 
 
 
 
6045f26
 
54b9d20
 
 
 
 
 
6045f26
 
54b9d20
 
 
 
6045f26
54b9d20
6045f26
 
54b9d20
 
 
 
 
 
 
 
 
 
6045f26
 
 
 
 
54b9d20
 
 
 
6045f26
 
54b9d20
 
 
 
 
 
6045f26
 
 
 
 
 
54b9d20
 
 
 
 
 
6045f26
 
54b9d20
 
 
 
 
6045f26
 
 
 
54b9d20
 
 
6045f26
54b9d20
 
6045f26
54b9d20
 
 
6045f26
 
54b9d20
6045f26
4790918
 
6045f26
 
54b9d20
 
 
6045f26
 
54b9d20
 
 
6045f26
 
 
 
 
 
 
54b9d20
 
6045f26
54b9d20
4790918
54b9d20
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917
918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
966
967
968
969
970
971
972
973
974
975
976
import gradio as gr
import os
import io
import png
import tensorflow as tf
import tensorflow_text as tf_text
import tensorflow_hub as tf_hub
import numpy as np
from PIL import Image
from huggingface_hub import snapshot_download, HfFolder
from sklearn.metrics.pairwise import cosine_similarity
import traceback
import time
import pandas as pd # Para formatear la salida en tabla

# --- Configuración ---
MODEL_REPO_ID = "google/cxr-foundation"
MODEL_DOWNLOAD_DIR = './hf_cxr_foundation_space' # Directorio dentro del contenedor del Space
# Umbrales
SIMILARITY_DIFFERENCE_THRESHOLD = 0.1
POSITIVE_SIMILARITY_THRESHOLD = 0.1
print(f"Usando umbrales: Comp Δ={SIMILARITY_DIFFERENCE_THRESHOLD}, Simp τ={POSITIVE_SIMILARITY_THRESHOLD}")

# --- Prompts ---
criteria_list_positive = [
    "optimal centering", "optimal inspiration", "optimal penetration",
    "complete field of view", "scapulae retracted", "sharp image", "artifact free"
]
criteria_list_negative = [
    "poorly centered", "poor inspiration", "non-diagnostic exposure",
    "cropped image", "scapulae overlying lungs", "blurred image", "obscuring artifact"
]

# --- Funciones Auxiliares (Integradas o adaptadas) ---
# @tf.function(input_signature=[tf.TensorSpec(shape=[None], dtype=tf.string)]) # Puede ayudar rendimiento
def preprocess_text(text):
    """Función interna del preprocesador BERT."""
    return bert_preprocessor_global(text) # Asume que bert_preprocessor_global está cargado

def bert_tokenize(text, preprocessor):
    """Tokeniza texto usando el preprocesador BERT cargado globalmente."""
    if preprocessor is None:
       raise ValueError("BERT preprocessor no está cargado.")
    if not isinstance(text, str): text = str(text)

    # Ejecutar el preprocesador
    out¡ = preprocessor(tf.constant([text.lower()]))

    # Extraer y procesar IDs y máscaras
    ids = out['input_word_ids'].numpy().astype(np.int32)
    masks =Por supuesto! Aquí está el código completo del archivo `app.py` para out['input_mask'].numpy().astype(np.float32)
    paddings = 1.0 - masks

    # Reemplazar token [SEP] (102) por 0 y marcar Gradio con la corrección del tema oscuro (eliminando `text_color_subdued`).

 como padding
    end_token_idx = (ids == 10```python
import gradio as gr
import os
import io
import png
import tensorflow as tf2)
    ids[end_token_idx] = 0

import tensorflow_text as tf_text
import tensorflow_hub as tf    paddings[end_token_idx] = 1.0_hub
import numpy as np
from PIL import Image
from huggingface_hub import snapshot_download,

    # Asegurar las dimensiones (B, T, S) -> ( HfFolder
from sklearn.metrics.pairwise import cosine_similarity
import1, 1, 128)
    # El preprocesador puede devolver (1, 128), necesitamos (1, 1, 12 traceback
import time
import pandas as pd # Para formatear la salida en tabla

# --- Configuración ---8)
    if ids.ndim == 2: ids = np.expand_dims(ids, axis=1)
    if paddings.
MODEL_REPO_ID = "google/cxr-foundation"
ndim == 2: paddings = np.expand_dims(paddMODEL_DOWNLOAD_DIR = './hf_cxr_foundation_space'ings, axis=1)

    # Verificar formas finales
    expected_shape = (1 # Directorio dentro del contenedor del Space
SIMILARITY_DIFFERENCE_THRESHOLD = , 1, 128)
    if ids.shape != expected_shape:
         # Intentar reajustar si es necesario (puede0.1
POSITIVE_SIMILARITY_THRESHOLD = 0.1 pasar con algunas versiones)
         if ids.shape == (1,1
print(f"Usando umbrales: Comp Δ={SIMILAR28): ids = np.expand_dims(ids, axis=1ITY_DIFFERENCE_THRESHOLD}, Simp τ={POSITIVE_SIMILARITY_THRESHOLD}")

# --- Prompts ---
criteria_list_positive)
         else: raise ValueError(f"Shape incorrecta para ids: = [
    "optimal centering", "optimal inspiration", "optimal penetration",
    "complete field of view {ids.shape}, esperado {expected_shape}")
    if paddings", "scapulae retracted", "sharp image", "artifact free"
].shape != expected_shape:
         if paddings.shape == (
criteria_list_negative = [
    "poorly centered", "1,128): paddings = np.expand_dims(paddings, axis=1)poor inspiration", "non-diagnostic exposure",
    "cropped image", "scapulae overlying lungs
         else: raise ValueError(f"Shape incorrecta para paddings: {paddings.shape}, esperado {expected_shape}")

    return ids, paddings

", "blurred image", "obscuring artifact"
]

# --- Funciones Auxiliadef png_to_tfexample(image_array: np.ndarray) -> tf.train.Example:
    """Crea tf.train.Example desde NumPy array (res (Integradas o adaptadas) ---
def bert_tokenize(text, preprocessor):
escala de grises)."""
    if image_array.ndim ==    """Tokeniza texto usando el preprocesador BERT cargado globalmente."""
    if 3 and image_array.shape[2] == 1:
 preprocessor is None: raise ValueError("BERT preprocessor no está cargado.")        image_array = np.squeeze(image_array, axis=2) # Asegurar 2D
    elif image_array.ndim != 2:
        raise ValueError(f'Array debe ser 2-D (
    if not isinstance(text, str): text = str(text)escala de grises). Dimensiones actuales: {image_array.ndim

    out = preprocessor(tf.constant([text.lower()]))}')

    image = image_array.astype(np.float32)
    min
    ids = out['input_word_ids'].numpy().astype(_val = image.min()
    max_val = image.max()

    np.int32)
    masks = out['input_mask'].# Evitar división por cero si la imagen es constante
    if max_val <= min_val:numpy().astype(np.float32)
    paddings =
        # Si es constante, tratar como uint8 si el rango original lo permitía,
 1.0 - masks
    end_token_idx = (ids == 102)
        # o simplemente ponerla a 0 si es float.
        if image_array.    ids[end_token_idx] = 0
    paddings[end_token_idx] = 1.0

    if ids.ndim == 2dtype == np.uint8 or (min_val >= 0 and max: ids = np.expand_dims(ids, axis=1)
    if paddings.ndim == 2: paddings = np.expand_val <= 255):
             pixel_array = image._dims(paddings, axis=1)

    expected_shape = (1,astype(np.uint8)
             bitdepth = 8
         1, 128)
    if ids.shape != expectedelse: # Caso flotante constante o fuera de rango uint8
             pixel__shape:
         if ids.shape == (1,128): ids = np.expand_dims(ids, axis=1)
         else: raise ValueErrorarray = np.zeros_like(image, dtype=np.uint1(f"Shape incorrecta para ids: {ids.shape}, esperado {6)
             bitdepth = 16
    else:
        expected_shape}")
    if paddings.shape != expected_shape:image -= min_val # Mover mínimo a cero
        current_max = max_val -
         if paddings.shape == (1,128): padd min_val
        # Escalar a 16-bit para mayor precisión si noings = np.expand_dims(paddings, axis=1) era uint8 originalmente
        if image_array.dtype != np.uint8:
         else: raise ValueError(f"Shape incorrecta para paddings:
            image *= 65535 / current_max
            pixel_array = {paddings.shape}, esperado {expected_shape}")

    return ids, paddings

 image.astype(np.uint16)
            bitdepth = def png_to_tfexample(image_array: np.ndarray)16
        else:
            # Si era uint8, mantener el rango y tipo
            # La resta del min ya la dejó en [0, current_max]
 -> tf.train.Example:
    """Crea tf.train.Example desde NumPy array (            # Escalar a 255 si es necesario
            image *= 255 / current_escala de grises)."""
    if image_array.ndim ==max
            pixel_array = image.astype(np.uint8) 3 and image_array.shape[2] == 1:

            bitdepth = 8

    # Codificar como PNG
    output = io.Bytes        image_array = np.squeeze(image_array, axis=2IO()
    png.Writer(
        width=pixel_array.) # Asegurar 2D
    elif image_array.ndim != 2shape[1],
        height=pixel_array.shape[0],:
        raise ValueError(f'Array debe ser 2-D (
        greyscale=True,
        bitdepth=bitdepth
    escala de grises). Dimensiones actuales: {image_array.ndim).write(output, pixel_array.tolist())
    png_bytes = output.getvalue()

}')

    image = image_array.astype(np.float32)
    min_val    # Crear tf.train.Example
    example = tf.train.Example()
, max_val = image.min(), image.max()

    if    features = example.features.feature
    features['image/encoded']. max_val <= min_val: # Imagen constante
        if image_array.dtype == np.uint8 or (min_val >= 0 and max_bytes_list.value.append(png_bytes)
    features['image/format'].bytes_list.value.append(b'png')
    return example

def generate_image_embedding(img_np,val <= 255):
             pixel_array = image.astype(np.uint8); bitdepth = 8
        else:
             pixel_array = np.zeros_like(image elixrc_infer, qformer_infer):
    """Genera embedding final, dtype=np.uint16); bitdepth = 16
    else: # Imagen con rango
        image -= min_val
        current_max = max_val - min de imagen."""
    if elixrc_infer is None or qformer_infer is None:
        raise ValueError("Modelos ELIXR-C o Q_val
        if image_array.dtype != np.uint8: #Former no cargados.")

    try:
        # 1. EL Escalar a 16-bit si no era uint8
            image *= 6IXR-C
        serialized_img_tf_example = png_5535 / current_max
            pixel_array = image.to_tfexample(img_np).SerializeToString()
        elixrc_output = elixrcastype(np.uint16); bitdepth = 16
        _infer(input_example=tf.constant([serialized_img_tf_example]))else: # Mantener rango uint8
            image *= 255 / current_max
            pixel_array = image.astype(np.uint
        elixrc_embedding = elixrc_output['feature_maps_0'].numpy()
8); bitdepth = 8

    output = io.BytesIO()
    png.Writer(width=pixel_array.shape[1], height=pixel_array.shape        print(f"  Embedding ELIXR-C shape: {elixrc_embedding.[0], greyscale=True, bitdepth=bitdepth).write(shape}")

        # 2. QFormer (Imagen)
        qformer_input_output, pixel_array.tolist())
    png_bytes = output.getvalue()

    example = tf.train.Example()
    features = example.features.feature
    features['image/encoded'].bytes_list.value.img = {
            'image_feature': elixrc_embedding.tolist(),
append(png_bytes)
    features['image/format'].bytes_            'ids': np.zeros((1, 1, 12list.value.append(b'png')
    return example

def8), dtype=np.int32).tolist(), # Texto vacío
            'paddings': generate_image_embedding(img_np, elixrc_infer, np.ones((1, 1, 128), dtype= qformer_infer):
    """Genera embedding final de imagen."""
    if elixnp.float32).tolist(), # Todo padding
        }
        qformer_output_img = qformer_infer(**qformer_input_imgrc_infer is None or qformer_infer is None: raise ValueError(")
        image_embedding = qformer_output_img['all_contrastive_imgModelos ELIXR-C o QFormer no cargados.")
    _emb'].numpy()

        # Ajustar dimensiones si es necesario
        if image_try:
        # 1. ELIXR-C
        serialized_embedding.ndim > 2:
            print(f"  Ajustimg_tf_example = png_to_tfexample(img_npando dimensiones embedding imagen (original: {image_embedding.shape})")
).SerializeToString()
        elixrc_output = elixrc_infer(            image_embedding = np.mean(
                image_embedding,
input_example=tf.constant([serialized_img_tf_example]))                axis=tuple(range(1, image_embedding.ndim - 
        elixrc_embedding = elixrc_output['feature_maps_0'].numpy1))
            )
            if image_embedding.ndim == 1()
        print(f"  Embedding ELIXR-C shape: {elixrc_embedding.:
                image_embedding = np.expand_dims(image_embedding, axis=0)
        elif image_embedding.ndim == 1:
shape}")

        # 2. QFormer (Imagen)
        qformer_input_             image_embedding = np.expand_dims(image_embedding, axis=0) # Asegurar 2D

        print(f"  Embedding final imagen shape: {image_embedding.shape}")
        if image_embedding.ndimimg = {
            'image_feature': elixrc_embedding.tolist(),
 != 2:
            raise ValueError(f"Embedding final de imagen no tiene 2 dimensiones: {            'ids': np.zeros((1, 1, 12image_embedding.shape}")
        return image_embedding

    except Exception8), dtype=np.int32).tolist(), # Texto vacío
            'paddings as e:
        print(f"Error generando embedding de imagen: {e}")
        ': np.ones((1, 1, 128), dtype=np.floattraceback.print_exc()
        raise # Re-lanzar32).tolist(), # Todo padding
        }
        qformer_output_img = qformer_ la excepción para que Gradio la maneje

def calculate_similarities_and_classify(infer(**qformer_input_img)
        image_embedding = qformer_output_image_embedding, bert_preprocessor, qformer_infer):
    img['all_contrastive_img_emb'].numpy()

        # Ajustar dimensiones
        if"""Calcula similitudes y clasifica."""
    if image_embedding is None: raise ValueError("Embedding image_embedding.ndim > 2:
            print(f"  Ajustando de imagen es None.")
    if bert_preprocessor is None: raise ValueError("Preprocesador BERT es dimensiones embedding imagen (original: {image_embedding.shape})")
            image_embedding = np.mean(image_embedding, axis=tuple( None.")
    if qformer_infer is None: raise ValueError("Qrange(1, image_embedding.ndim - 1)))
        if image_embedding.ndim == Former es None.")
    detailed_results = {}
    print("\n--- Calculando similitudes y clasific1: image_embedding = np.expand_dims(image_embedding,ando ---")

    for i in range(len(criteria_list_positive)):
         axis=0) # Asegurar 2D
        print(f"  Embedding final imagen shapepositive_text = criteria_list_positive[i]
        negative_: {image_embedding.shape}")
        if image_embedding.ndimtext = criteria_list_negative[i]
        criterion_name = != 2: raise ValueError(f"Embedding final imagen no tiene 2 dims positive_text # Usar prompt positivo como clave

        print(f": {image_embedding.shape}")
        return image_embedding
    except Exception as e:
Procesando criterio: \"{criterion_name}\"")
        similarity_positive, similarity        print(f"Error generando embedding imagen: {e}"); traceback.print_exc(); raise

def calculate_similarities_and_classify(image_embedding, bert_preprocessor_negative, difference = None, None, None
        classification_comp, classification_simp = "ERROR", "ERROR"

        try:
            #, qformer_infer):
    """Calcula similitudes y clasifica."""
    if image_embedding is None: raise ValueError("Embedding imagen es None.")
    if bert_ 1. Embedding Texto Positivo
            tokens_pos, paddings_pos = bert_tokenize(preprocessor is None: raise ValueError("Preprocesador BERT es None.")
    if qformer_positive_text, bert_preprocessor)
            qformer_input_infer is None: raise ValueError("QFormer es None.")
    detailed_results = {}
    print("\n--- Calculando similitudes y clasificando ---")
    for i intext_pos = {
                'image_feature': np.zeros([ range(len(criteria_list_positive)):
        positive_text,1, 8, 8, 1376], dtype= negative_text = criteria_list_positive[i], criteria_list_np.float32).tolist(), # Dummy
                'ids': tokensnegative[i]
        criterion_name = positive_text # Usar prompt positivo_pos.tolist(), 'paddings': paddings_pos.tolist(),
            }
            text como clave
        print(f"Procesando criterio: \"{criterion_name}\"_embedding_pos = qformer_infer(**qformer_input_text")
        similarity_positive, similarity_negative, difference = None, None, None
        classification__pos)['contrastive_txt_emb'].numpy()
            if text_embedding_poscomp, classification_simp = "ERROR", "ERROR"
        try:.ndim == 1: text_embedding_pos = np.expand_
            # 1. Embeddings de Texto
            tokens_pos, paddings_pos = bert_tokenize(positive_text, bert_preprocessordims(text_embedding_pos, axis=0)

            # )
            qformer_input_pos = {'image_feature': np2. Embedding Texto Negativo
            tokens_neg, paddings_neg.zeros([1, 8, 8, 1376 = bert_tokenize(negative_text, bert_preprocessor)
            qformer_input_text], dtype=np.float32).tolist(), 'ids': tokens_pos.tolist(), 'padd_neg = {
                'image_feature': np.zeros([1ings': paddings_pos.tolist()}
            text_embedding_pos = qformer_infer(**qformer_input_pos)['contrastive_txt_emb'].numpy(), 8, 8, 1376], dtype=np
            if text_embedding_pos.ndim == 1: text_embedding_pos = np.expand_dims(text_embedding_pos, axis=0).float32).tolist(), # Dummy
                'ids': tokens_neg.tolist(), 'paddings': paddings_neg.tolist(),

            tokens_neg, paddings_neg = bert_tokenize(negative_text, bert_preprocessor)
            qformer_input_neg
            }
            text_embedding_neg = qformer_infer(** = {'image_feature': np.zeros([1, 8, qformer_input_text_neg)['contrastive_txt_emb'].numpy()
            if text_embedding_neg.ndim == 1: text_embedding_neg8, 1376], dtype=np.float32). = np.expand_dims(text_embedding_neg, axis=0tolist(), 'ids': tokens_neg.tolist(), 'paddings':)

            # Verificar compatibilidad de dimensiones para similitud
            if image_embedding paddings_neg.tolist()}
            text_embedding_neg = qformer_infer(**qformer_input_neg)['contrastive_txt_.shape[1] != text_embedding_pos.shape[1]:emb'].numpy()
            if text_embedding_neg.ndim == 
                 raise ValueError(f"Dimensión incompatible: Imagen ({image_embedding.shape[11: text_embedding_neg = np.expand_dims(text_embedding_neg, axis=0)

            # Verificar dimensiones
            if image_embedding.shape]}) vs Texto Pos ({text_embedding_pos.shape[1]})")
            if[1] != text_embedding_pos.shape[1]: raise ValueError(f"Dim mismatch: Img ({image_embedding.shape[1]}) vs Pos ({text_embedding_pos.shape[1]})")
            if image_embedding image_embedding.shape[1] != text_embedding_neg.shape.shape[1] != text_embedding_neg.shape[1]: raise ValueError(f"Dim mismatch: Img ({image_embedding.shape[1]:
                 raise ValueError(f"Dimensión incompatible: Imagen ({image_embedding.shape[1[1]}) vs Neg ({text_embedding_neg.shape[1]})")

            # 2. Calcular Similitudes
            similarity_positive = cosine_similarity(image]}) vs Texto Neg ({text_embedding_neg.shape[1]})")_embedding, text_embedding_pos)[0][0]
            similarity_negative =

            # 3. Calcular Similitudes
            similarity_positive = cosine_similarity(image_embedding cosine_similarity(image_embedding, text_embedding_neg)[0][, text_embedding_pos)[0][0]
            similarity_negative0]

            # 3. Clasificar
            difference = similarity_positive - similarity = cosine_similarity(image_embedding, text_embedding_neg)[0_negative
            classification_comp = "PASS" if difference > SIMILARITY_DIFFERENCE][0]
            print(f"  Sim (+)={similarity_positive_THRESHOLD else "FAIL"
            classification_simp = "PASS" if:.4f}, Sim (-)={similarity_negative:.4f}")

             similarity_positive > POSITIVE_SIMILARITY_THRESHOLD else "FAIL"# 4. Clasificar
            difference = similarity_positive - similarity_
            print(f"  Sim(+)={similarity_positive:.4f},negative
            classification_comp = "PASS" if difference > SIMILARITY_DIFFERENCE Sim(-)={similarity_negative:.4f}, Diff={difference:.4f_THRESHOLD else "FAIL"
            classification_simp = "PASS" if} -> Comp:{classification_comp}, Simp:{classification_simp}")
        except Exception as similarity_positive > POSITIVE_SIMILARITY_THRESHOLD else "FAIL" e:
            print(f"  ERROR procesando criterio '{criterion_name}': {e}"); traceback.print_exc()
            # Mantener clasificaciones como "ERROR
            print(f"  Diff={difference:.4f} -> Comp: {classification_comp},"
        detailed_results[criterion_name] = {
            'positive_prompt': Simp: {classification_simp}")

        except Exception as e:
            print(f"  ERROR procesando criterio '{criterion_name}': {e}")
            traceback.print_exc()
            # Mantener clasificaciones como "ERROR" positive_text, 'negative_prompt': negative_text,
            'similarity_positive': float(similarity_positive) if similarity_positive is not None else None,


        # Guardar resultados
        detailed_results[criterion_name] = {
                        'similarity_negative': float(similarity_negative) if similarity_negative'positive_prompt': positive_text,
            'negative_prompt': is not None else None,
            'difference': float(difference) if negative_text,
            'similarity_positive': float(similarity_positive difference is not None else None,
            'classification_comparative': classification) if similarity_positive is not None else None,
            'similarity__comp, 'classification_simplified': classification_simp
        }
    return detailed_resultsnegative': float(similarity_negative) if similarity_negative is not None else None,
            'difference': float(difference) if difference is not None

# --- Carga Global de Modelos ---
print("--- Iniciando carga global de modelos else None,
            'classification_comparative': classification_comp,
 ---")
start_time = time.time()
models_loaded = False
bert_preprocessor_global = None
elixrc_infer            'classification_simplified': classification_simp
        }
    return detailed_results

# ---_global = None
qformer_infer_global = None
try: Carga Global de Modelos ---
# Se ejecuta UNA VEZ al iniciar la
    hf_token = os.environ.get("HF_TOKEN") # Leer aplicación Gradio/Space
print("--- Iniciando carga global de modelos ---")
start_ token desde secretos del Space
    if hf_token: print("HFtime = time.time()
models_loaded = False
bert_pre_TOKEN encontrado, usando para autenticación.")

    os.makedirs(MODEL_DOWNLOADprocessor_global = None
elixrc_infer_global = None
_DIR, exist_ok=True)
    print(f"Descargando/verificando modelos en: {MODEL_DOWNLOAD_DIR}")qformer_infer_global = None

try:
    # Añadir token si
    snapshot_download(repo_id=MODEL_REPO_ID, local_dir=MODEL_DOWNLOAD_DIR,
                      allow_patterns=['elixr es necesario (para repos privados o gated)
    hf_token = os.environ.get("-c-v2-pooled/*', 'pax-elixr-b-text/*'],
                      local_dir_use_symlinks=False, token=hf_token) # Pasar token aquí
    print("Modelos descargados/verificados.")

HF_TOKEN") # Leer token desde secretos del Space
    # if hf_token:
        print("Cargando Preprocesador BERT...")
    bert_preprocess#     print("Usando HF_TOKEN para autenticación.")
    #     # HfFolder.save_token(hf_token) # Esto no siempre funciona bien en entornos server_handle = "https://tfhub.dev/tensorflow/bert_enless

    # Crear directorio si no existe
    os.makedirs(MODEL_DOWNLOAD_DIR_uncased_preprocess/3"
    bert_preprocessor_global, exist_ok=True)
    print(f"Descargando/verificando modelos en = tf_hub.KerasLayer(bert_preprocess_handle)
    print("Preprocesador BERT: {MODEL_DOWNLOAD_DIR}")
    snapshot_download(repo_id=MODEL cargado.")

    print("Cargando ELIXR-C...")_REPO_ID, local_dir=MODEL_DOWNLOAD_DIR,

    elixrc_model_path = os.path.join(                      allow_patterns=['elixr-c-v2-pooled/*', 'pax-elixrMODEL_DOWNLOAD_DIR, 'elixr-c-v2--b-text/*'],
                      local_dir_use_symlinkspooled')
    elixrc_model = tf.saved_model.=False, # Evitar symlinks
                      token=hf_token) # Pasar tokenload(elixrc_model_path)
    elixrc_infer_global = elixrc_model.signatures['serving_default']
    print("Modelo aquí
    print("Modelos descargados/verificados.")

    # C ELIXR-C cargado.")

    print("Cargando Qargar Preprocesador BERT desde TF Hub
    print("Cargando Preprocesador BERT...")
    Former (ELIXR-B Text)...")
    qformer_model_path = os.path.join(MODEL_DOWNLOAD_DIR, '# Usar handle explícito puede ser más robusto en algunos entornos
    bert_preprocess_pax-elixr-b-text')
    qformer_handle = "https://tfhub.dev/tensorflow/bert_en_model = tf.saved_model.load(qformer_model_pathuncased_preprocess/3"
    bert_preprocessor_global =)
    qformer_infer_global = qformer_model.signatures['serving_default']
     tf_hub.KerasLayer(bert_preprocess_handle)
    print("Modelo QFormer cargado.")

    models_loaded = True
    end_print("Preprocesador BERT cargado.")

    # Cargar ELIXR-C
    print("Cargando ELIXR-C...")
    elixrctime = time.time()
    print(f"--- Modelos cargados global_model_path = os.path.join(MODEL_DOWNLOAD_DIRmente con éxito en {end_time - start_time:.2f}, 'elixr-c-v2-pooled')
    el segundos ---")
except Exception as e:
    models_loaded = False
    print(ixrc_model = tf.saved_model.load(elixrcf"--- ERROR CRÍTICO DURANTE LA CARGA GLOBAL DE MODELOS_model_path)
    elixrc_infer_global = el ---"); print(e); traceback.print_exc()

# --- Función Principal de Procesamiento paraixrc_model.signatures['serving_default']
    print("Modelo Gradio ---
def assess_quality_and_update_ui(image ELIXR-C cargado.")

    # Cargar QFormer (_pil):
    """Procesa la imagen y devuelve actualizaciones para la UI."""ELIXR-B Text)
    print("Cargando QFormer
    if not models_loaded:
        raise gr.Error("Error: Los (ELIXR-B Text)...")
    qformer_model_ modelos no se pudieron cargar. La aplicación no puede procesar imágenes.")
    if image_pil is Nonepath = os.path.join(MODEL_DOWNLOAD_DIR, 'p:
        # Devuelve valores por defecto/vacíos y controla la visibilidad
        return (
ax-elixr-b-text')
    qformer_model            gr.update(visible=True),  # Muestra bienvenida
            gr.update(visible= = tf.saved_model.load(qformer_model_path)
    qformer_infer_global = qformer_model.signatures['False), # Oculta resultados
            None,                     # Borra imagen de salidaserving_default']
    print("Modelo QFormer cargado.")

    
            gr.update(value="N/A"),   # Borra etiqueta
            pdmodels_loaded = True
    end_time = time.time()
.DataFrame(),           # Borra dataframe
            None                      # Borra JSON
        )

    print("\n--- Iniciando evaluación para nueva imagen ---")
    start    print(f"--- Modelos cargados globalmente con éxito en {end_time_process_time = time.time()
    try:
        # - start_time:.2f} segundos ---")

except Exception as e:
    models_loaded = False
    print(f"--- ERROR CRÍTICO DUR 1. Convertir a NumPy
        img_np = np.arrayANTE LA CARGA GLOBAL DE MODELOS ---")
    print(e)
    traceback.print_(image_pil.convert('L'))
        print(f"Imagenexc()
    # Gradio se iniciará, pero la función de análisis fallará. convertida a NumPy. Shape: {img_np.shape}, Tipo:

# --- Función Principal de Procesamiento para Gradio ---
def assess_quality_and_ {img_np.dtype}")
        # 2. Generar Embeddingupdate_ui(image_pil):
    """Procesa la imagen y devuelve actualizaciones
        print("Generando embedding de imagen...")
        image_embedding = generate_image_embedding(img_np, elixrc_infer_global, q para la UI."""
    if not models_loaded:
        raise grformer_infer_global)
        print("Embedding de imagen generado.")
.Error("Error: Los modelos no se pudieron cargar. La aplicación no puede procesar imágenes.")
        # 3. Clasificar
        print("Calculando similitudes y clasificando criterios    if image_pil is None:
        # Devuelve valores por defecto/vacíos...")
        detailed_results = calculate_similarities_and_classify(image_embedding, bert_preprocessor_global, qformer_infer_ y controla la visibilidad
        return (
            gr.update(visible=Trueglobal)
        print("Clasificación completada.")
        # ),  # Muestra bienvenida
            gr.update(visible=False), # Oculta resultados
            4. Formatear Resultados
        output_data, passed_count,None,                     # Borra imagen de salida
            gr.update(value="N/A total_count = [], 0, 0
        for criterion, details in detailed_results.items"),   # Borra etiqueta
            pd.DataFrame(),           # Borra dataframe():
            total_count += 1
            sim_pos = details
            None                      # Borra JSON
        )

    print("\n--- Iniciando evaluación['similarity_positive']
            sim_neg = details['similarity_negative para nueva imagen ---")
    start_process_time = time.time']
            diff = details['difference']
            comp = details['classification_comparative']
            simp = details['classification_simplified']
            ()
    try:
        # 1. Convertir a NumPy
        img_np = np.array(image_pil.convert('Loutput_data.append([ criterion, f"{sim_pos:.4f}"'))
        print(f"Imagen convertida a NumPy. Shape: {img_np.shape}, Tipo: {img_np.dtype}")

 if sim_pos is not None else "N/A",
                f"{sim_neg:.        # 2. Generar Embedding de Imagen
        print("Generando embedding4f}" if sim_neg is not None else "N/A", de imagen...")
        image_embedding = generate_image_embedding(img f"{diff:.4f}" if diff is not None else "N/_np, elixrc_infer_global, qformer_infer_A", comp, simp ])
            if comp == "PASS": passed_count += 1
global)
        print("Embedding de imagen generado.")

        # 3        df_results = pd.DataFrame(output_data, columns=[ "Criterion", "Sim (+)", "Sim (-)", "Difference", "Assessment (Comp)", "Assessment (Simp)" ])
        overall_quality = "Error"; pass_. Calcular Similitudes y Clasificar
        print("Calculando similitudesrate = 0
        if total_count > 0:
             y clasificando criterios...")
        detailed_results = calculate_similarities_and_classify(pass_rate = passed_count / total_count
            if pass_image_embedding, bert_preprocessor_global, qformer_infer_rate >= 0.85: overall_quality = "Excellent"
            elif pass_rate >= global)
        print("Clasificación completada.")

        # 0.70: overall_quality = "Good"
            elif pass4. Formatear Resultados para Gradio
        output_data = []
        passed_count = _rate >= 0.50: overall_quality = "Fair"0
        total_count = 0
        for criterion, details in detailed_results.items
            else: overall_quality = "Poor"
        quality_label():
            total_count += 1
            sim_pos = details['similarity_positive']
            sim_neg = details['similarity_negative = f"{overall_quality} ({passed_count}/{total_count}']
            diff = details['difference']
            comp = details['classification passed)"
        end_process_time = time.time()
        print(f"--- Evaluación completada en {end_process_time - start_process_time:.2f} seg_comparative']
            simp = details['classification_simplified']
             ---")
        # Devolver resultados y actualizar visibilidad
        return (
            output_data.append([
                criterion,
                f"{sim_pos:.4f}"gr.update(visible=False), # Oculta bienvenida
            gr.update(visible=True),  # Muestra resultados
            image_pil,                # Muestra imagen if sim_pos is not None else "N/A",
                f procesada
            gr.update(value=quality_label), # Actualiza etiqueta
            df_results,               # Actualiza dataframe
            detailed"{sim_neg:.4f}" if sim_neg is not None else_results          # Actualiza JSON
        )
    except Exception as e "N/A",
                f"{diff:.4f}" if diff:
        print(f"Error durante procesamiento Gradio: {e}"); is not None else "N/A",
                comp,
                simp
            ])
 traceback.print_exc()
        raise gr.Error(f"Error procesando imagen: {str            if comp == "PASS":
                passed_count += 1

(e)}")

# --- Función para Resetear la UI ---
def reset_ui        # Crear DataFrame
        df_results = pd.DataFrame(output_data, columns():
    print("Reseteando UI...")
    return (
        gr.update(visible==[
            "Criterion", "Sim (+)", "Sim (-)", "Difference", "Assessment (CompTrue),  # Muestra bienvenida
        gr.update(visible=False), # Oculta resultados
        None,                     # Borra imagen de)", "Assessment (Simp)"
        ])

        # Calcular etiqueta de calidad general
        overall_quality entrada
        None,                     # Borra imagen de salida
        gr.update(value="N/A"),   # Borra etiqueta
        pd = "Error"
        pass_rate = 0
        if total_count > 0:
.DataFrame(),           # Borra dataframe
        None                      # Borra JSON
    )

# --- Definir Tema Oscuro Personalizado ---
# Inspirado en los colores del HTML original y            pass_rate = passed_count / total_count
            if pass Tailwind dark grays/blues
dark_theme = gr.themes.Default_rate >= 0.85: overall_quality = "Excellent"
            elif pass_rate >=(
    primary_hue=gr.themes.colors.blue,       # Azul como color primario
    secondary_hue=gr.themes.colors.blue, 0.70: overall_quality = "Good"
            elif     # Azul secundario
    neutral_hue=gr.themes.colors pass_rate >= 0.50: overall_quality = "Fair.gray,       # Gris neutro
    font=[gr.themes.GoogleFont("Inter"
            else: overall_quality = "Poor"
        quality_"), "ui-sans-serif", "system-ui", "sans-label = f"{overall_quality} ({passed_count}/{total_countserif"],
    font_mono=[gr.themes.GoogleFont("Jet} passed)"

        end_process_time = time.time()
        print(f"---Brains Mono"), "ui-monospace", "Consolas", "monospace"],
 Evaluación completada en {end_process_time - start_process_time:.2f} segundos ---).set(
    # Fondos
    body_background_fill="#111827",          # Fondo principal muy oscuro (gray-900)
    background_fill_primary="#1f2937",")

        # Devolver resultados y actualizar visibilidad
        return (
                   # Fondo de componentes (gray-800)
    background_fill_secondary="#3gr.update(visible=False), # Oculta bienvenida
            gr.update(visible=74151",     # Fondo secundario (gray-700)
    block_background_fill="#1f2937",         True),  # Muestra resultados
            image_pil,                # Muestra imagen# Fondo de bloques (gray-800)

    # Texto
 procesada
            gr.update(value=quality_label), # Actualiza etiqueta
            df    body_text_color="#d1d5db",               # Texto_results,               # Actualiza dataframe
            detailed_results          # Actualiza JSON
        )
    except Exception as e:
        print(f"Error durante principal claro (gray-300)
    # text_color_subdued="# procesamiento Gradio: {e}")
        traceback.print_exc()
        9ca3af",          # <-- LÍNEA PROBLEMÁTICA EL# Lanzar un gr.Error para mostrarlo en la UI de Gradio
        raise gr.Error(f"Error procesando imagen: {str(e)}")


# --- Función para ResetearIMINADA
    block_label_text_color="#d1d5db",        # Etiquetas de bloque (gray-300)
    block_title_text la UI ---
def reset_ui():
    print("Reseteando UI...")
    return (
        gr.update(visible=True),  # Muestra bienvenida
_color="#ffffff",        # Títulos de bloque (blanco)

        gr.update(visible=False), # Oculta resultados
            # Bordes
    border_color_accent="#374151",None,                     # Borra imagen de entrada
        None,                     # Bor           # Borde (gray-700)
    border_colorra imagen de salida
        gr.update(value="N/A"),   # Borra etiqueta
        _primary="#4b5563",          # Borde primario (gray-pd.DataFrame(),           # Borra dataframe
        None                      # Borra JSON
    )

600)

    # Botones y Elementos Interactivos
    # --- Definir Tema Oscuro Personalizado (CORREGIDO) ---
#button_primary_background_fill="*primary_600", # Usa color primario (azul)
    button_primary_text_color="#ffffff",
     Inspirado en los colores del HTML original y Tailwind dark grays/blues
dark_button_secondary_background_fill="*neutral_700",
    button_secondary_text_color="#ffffff",
    input_background_fill="#3theme = gr.themes.Default(
    primary_hue=gr.74151",         # Fondo de inputs (gray-700)
    input_borderthemes.colors.blue,       # Azul como color primario
    secondary_hue=gr.themes.colors.blue,     # Azul secundario
    neutral_hue=gr_color="#4b5563",            # Borde de inputs (gray-.themes.colors.gray,       # Gris neutro
    font=[gr.themes.GoogleFont("Inter"), "ui-sans-serif", "system-ui", "sans600)
    input_text_color="#ffffff",              # Texto en inputs

    # Sombras y Radios
    shadow_drop="rgba(0,0,0,0-serif"],
    font_mono=[gr.themes.GoogleFont("JetBrains Mono"), "ui.2) 0px 2px 4px",
    block-monospace", "Consolas", "monospace"],
).set(
    _shadow="rgba(0,0,0,0.2) # Fondos
    body_background_fill="#111827",          0px 2px 5px",
    radius_size="*# Fondo principal muy oscuro (gray-900)
    background_fill_primaryradius_lg",                # Bordes redondeados
)


# --- Definir la Interfaz Gradio con="#1f2937",       # Fondo de componentes (gray-800)
 Bloques y Tema ---
with gr.Blocks(theme=dark_theme, title="CXR Quality Assessment") as demo:
    # --- Cabecera ---
    with gr.Row():
        gr.Markdown(
            """
            # <span style="color: #    background_fill_secondary="#374151",     #e5e7eb;">CXR Quality Assessment</span>
            <p style Fondo secundario (gray-700)
    block_background_="color: #9ca3af;">Evaluate chest X-ray technical quality usingfill="#1f2937",         # Fondo de bloques (gray-8 AI (ELIXR family)</p>
            """,
            elem_id="app-header00)

    # Texto
    body_text_color="#d1d5db",               #"
        )

    # --- Contenido Principal (Dos Columnas) ---
    with gr Texto principal claro (gray-300)
    # text_color_subdued.Row(equal_height=False): # Permitir alturas diferentes

        # --- Columna Iz="#9ca3af",          # <--- ESTA LÍNEA CAUSABA EL ERROR Y FUE ELIMINADA/COMENTADA
    block_label_text_color="#d1d5db",        # Etiquetas de bloque (gray-300quierda (Carga) ---
        with gr.Column(scale=1,)
    block_title_text_color="#ffffff",        # T min_width=350):
            gr.Markdown("### ítulos de bloque (blanco)

    # Bordes
    border_1. Upload Image", elem_id="upload-title")
            inputcolor_accent="#374151",           # Borde (gray-70_image = gr.Image(type="pil", label="Upload Chest X-ray", height=300)
    border_color_primary="#4b55630) # Altura fija para imagen entrada
            with gr.Row():
                 ",          # Borde primario (gray-600)

    analyze_btn = gr.Button("Analyze Image", variant="primary", scale=2)
                 reset_btn = gr.Button("Reset", variant="secondary", scale=1)
            ## Botones y Elementos Interactivos
    button_primary_background_fill="*primary_600", # Usa color primario (azul)
    button_primary_ Añadir ejemplos si tienes imágenes de ejemplo
            # gr.Examples(
            text_color="#ffffff",
    button_secondary_background_fill="*neutral_700",#     examples=[os.path.join("examples", "sample_cx
    button_secondary_text_color="#ffffff",
    input_background_fill="#3r.png")],
            #     inputs=input_image, label="Example CXR"
            # )
            gr.Markdown(
                74151",         # Fondo de inputs (gray-700)
    input_border_color="#4b5563",            # Borde de inputs (gray-"<p style='color:#9ca3af; font-size:0600)
    input_text_color="#ffffff",              #.9em;'>Model loading on startup takes ~1 min. Analysis takes ~15-40 sec.</p>"
            )


        # --- Columna Derecha (Bienvenida / Resultados) ---
         Texto en inputs

    # Sombras y Radios
    shadow_dropwith gr.Column(scale=2):

            # --- Bloque de Bienvenida (Visible Inicialmente="rgba(0,0,0,0.2) 0px) ---
            with gr.Column(visible=True, elem_id 2px 4px",
    block_shadow="rgba(0,0="welcome-section") as welcome_block:
                gr.Markdown(,0,0.2) 0px 2px 5px",
    radius_size="*radius_lg",                # Bordes redondeados
)



                    """
                    ### Welcome!
                    Upload a chest X-ray image (# --- Definir la Interfaz Gradio con Bloques y Tema ---
with gr.Blocks(themePNG, JPG, etc.) on the left panel and click "Analyze Image".=dark_theme, title="CXR Quality Assessment") as demo:


                    The system will evaluate its technical quality based on 7 standard criteria using the ELIXR model family.    # --- Cabecera ---
    with gr.Row():
        gr.Markdown
                    The results will appear here once the analysis is complete.
                    """,(
            """
            # <span style="color: #e5e7eb;">CXR elem_id="welcome-text"
                )


            # --- Blo Quality Assessment</span>
            <p style="color: #9ca3af;">Evaluate chest X-ray technical quality using AI (ELIXR family)</p>
            que de Resultados (Oculto Inicialmente) ---
            with gr.""", # Usar blanco/gris claro para texto cabecera
            elem_id="app-header"
        )

    # --- Contenido Principal (DosColumn(visible=False, elem_id="results-section") as results Columnas) ---
    with gr.Row(equal_height=False): # Permitir alturas diferentes

        # --- Columna Izquierda (Carga) ---
        with gr.Column(scale=1, min_width=_block:
                gr.Markdown("### 2. Quality Assessment Results350):
            gr.Markdown("### 1. Upload Image", elem_id="results-title")
                with gr.Row(): # Fila para imagen de salida", elem_id="upload-title")
            input_image = gr.Image(type y resumen
                     with gr.Column(scale=1):
                          output_image = gr.Image(type="pil", label="Analyzed Image", interactive=False)
                     with gr.Column(scale="pil", label="Upload Chest X-ray", height=300) # Altura fija para imagen entrada
            with gr.Row():
                 analyze_btn = gr=1):
                          gr.Markdown("#### Summary", elem_id=".Button("Analyze Image", variant="primary", scale=2)
                 reset_btn = gr.Button("Reset", variant="secondary", scale=1)
            #summary-title")
                          output_label = gr.Label(value="N/A", label="Overall Quality Estimate", elem_id="quality-label")

                gr.Markdown Añadir ejemplos si tienes imágenes de ejemplo
            # gr.Examples(
("#### Detailed Criteria Evaluation", elem_id="detailed-title")
                output            #     examples=[os.path.join("examples", "sample__dataframe = gr.DataFrame(
                    headers=["Criterion", "Sim (+cxr.png")],
            #     inputs=input_image, label)", "Sim (-)", "Difference", "Assessment (Comp)", "Assessment (Simp)"],
                    label=None, # Quitar etiqueta redundante
                    wrap=True,
                    max="Example CXR"
            # )
            gr.Markdown(
                "<p style='color:#9ca3af; font-size:0.9_rows=10, # Limitar filas visibles con scroll
                    overflow_row_behaviour="show_ends", # Muestra inicio/fin al hacer scroll
                    em;'>Model loading on startup takes ~1 min. Analysis takes ~15-4interactive=False, # No editable
                    elem_id="results-dataframe"
                )
0 sec.</p>"
            )


        # --- Columna Derecha (Bienvenida / Resultados) ---
        with gr.Column(scale=2):                with gr.Accordion("Raw JSON Output (for debugging)", open=False

            # --- Bloque de Bienvenida (Visible Inicialmente) ---
            with gr.Column(visible=True, elem_id="welcome-section") as welcome_block:
                gr.Markdown):
                      output_json = gr.JSON(label=None)

                gr.Markdown(
                    f"""
                    #### Technical Notes
                    *   **Criterion:** Quality(
                    """
                    ### Welcome!
                    Upload a chest X-ray image ( aspect evaluated.
                    *   **Sim (+/-):** Cosine similarity with positive/negative prompt.
                    *   **Difference:** Sim (+) - Sim (-).
                    *PNG, JPG, etc.) on the left panel and click "Analyze Image".   **Assessment (Comp):** PASS if Difference > {SIMILARITY_DI

                    The system will evaluate its technical quality based on 7 standard criteria using the ELIXR model family.FFERENCE_THRESHOLD}. (Main Result)
                    *   **Assessment (
                    The results will appear here once the analysis is complete.
                    """,Simp):** PASS if Sim (+) > {POSITIVE_SIMILARITY_THRESHOLD}.
                    """, elem_id="notes-text"
                )

    # --- Pie de página ---
    gr.Markdown(
        """
         elem_id="welcome-text"
                )
                # Podrías añadir un icono o----
        <p style='text-align:center; color:#9 imagen aquí si quieres
                # gr.Image("path/to/welcome_icon.pngca3af; font-size:0.8em;'>
        C", interactive=False, show_label=False, show_download_button=FalseXR Quality Assessment Tool | Model: google/cxr-foundation | Interface: Gradio
        </p>
        """, elem_id="app-footer"
        ))


            # --- Bloque de Resultados (Oculto Inicialmente) ---
            with gr.


    # --- Conexiones de Eventos ---
    analyze_btn.click(
        fnColumn(visible=False, elem_id="results-section") as results=assess_quality_and_update_ui,
        inputs=[input_block:
                gr.Markdown("### 2. Quality Assessment Results", elem_id="results_image],
        outputs=[
            welcome_block,      # ->-title")
                with gr.Row(): # Fila para imagen de salida actualiza visibilidad bienvenida
            results_block,      # -> actualiza visibilidad resultados
             y resumen
                     with gr.Column(scale=1):
                          outputoutput_image,       # -> muestra imagen analizada
            output_label,       # -> actualiza etiqueta resumen
            output_dataframe,   # -> actualiza tabla
            output_image = gr.Image(type="pil", label="Analyzed Image_json         # -> actualiza JSON
        ]
    )

    reset_btn.click(
        fn=reset_ui,
        inputs=None,", interactive=False)
                     with gr.Column(scale=1):
                          gr.Markdown("#### # No necesita inputs
        outputs=[
            welcome_block,
             Summary", elem_id="summary-title")
                          output_label = gr.Label(valueresults_block,
            input_image,        # -> limpia imagen entrada="N/A", label="Overall Quality Estimate", elem_id="quality
            output_image,
            output_label,
            output_dataframe,
            output_json
        ]
    )

# ----label")
                          # Podríamos añadir más texto de resumen aquí si quisiéramos

 Iniciar la Aplicación Gradio ---
if __name__ == "__main__":
                gr.Markdown("#### Detailed Criteria Evaluation", elem_id="detailed-title     # server_name="0.0.0.0" para accesibilidad en red local
     # server_port=7860 es el puerto estándar de HF")
                output_dataframe = gr.DataFrame(
                    headers=["Criterion", "Sim (+)", "Sim (-)", "Difference", "Assessment (Comp)", "Assessment (Simp)"],
                    label=None, # Quitar etiqueta redundante
                    wrap=True,
                    # La altura ahora se maneja mejor automáticamente o con CSS
                    # row_count=(7, "dynamic Spaces
     demo.launch(server_name="0.0.0") # Mostrar 7 filas, permitir scroll si hay más
                    max_rows=10, # Lim.0", server_port=7860)