File size: 47,207 Bytes
4790918 54b9d20 6045f26 4790918 54b9d20 4790918 54b9d20 4790918 54b9d20 4790918 54b9d20 4790918 54b9d20 4790918 54b9d20 4790918 54b9d20 4790918 54b9d20 4790918 54b9d20 4790918 54b9d20 4790918 54b9d20 4790918 54b9d20 4790918 54b9d20 4790918 54b9d20 4790918 54b9d20 4790918 54b9d20 4790918 54b9d20 4790918 54b9d20 4790918 54b9d20 4790918 54b9d20 4790918 54b9d20 4790918 54b9d20 4790918 54b9d20 4790918 54b9d20 4790918 54b9d20 4790918 54b9d20 4790918 54b9d20 4790918 54b9d20 4790918 54b9d20 4790918 54b9d20 4790918 54b9d20 4790918 54b9d20 4790918 54b9d20 4790918 54b9d20 4790918 54b9d20 4790918 54b9d20 4790918 54b9d20 6045f26 4790918 54b9d20 4790918 54b9d20 4790918 54b9d20 4790918 54b9d20 4790918 54b9d20 4790918 54b9d20 4790918 54b9d20 4790918 54b9d20 6045f26 54b9d20 6045f26 54b9d20 6045f26 4790918 54b9d20 4790918 54b9d20 6045f26 54b9d20 4790918 54b9d20 6045f26 54b9d20 6045f26 54b9d20 4790918 54b9d20 4790918 54b9d20 4790918 54b9d20 6045f26 54b9d20 6045f26 54b9d20 6045f26 54b9d20 6045f26 54b9d20 6045f26 54b9d20 6045f26 54b9d20 6045f26 54b9d20 6045f26 54b9d20 6045f26 4790918 6045f26 54b9d20 6045f26 54b9d20 6045f26 54b9d20 6045f26 54b9d20 6045f26 54b9d20 6045f26 54b9d20 6045f26 54b9d20 6045f26 54b9d20 6045f26 54b9d20 6045f26 54b9d20 6045f26 54b9d20 6045f26 4790918 6045f26 54b9d20 6045f26 54b9d20 6045f26 54b9d20 6045f26 54b9d20 6045f26 54b9d20 4790918 54b9d20 6045f26 4790918 6045f26 54b9d20 6045f26 54b9d20 6045f26 54b9d20 6045f26 54b9d20 6045f26 54b9d20 4790918 6045f26 54b9d20 6045f26 54b9d20 6045f26 54b9d20 6045f26 54b9d20 6045f26 54b9d20 6045f26 54b9d20 6045f26 54b9d20 6045f26 54b9d20 6045f26 54b9d20 6045f26 54b9d20 6045f26 54b9d20 6045f26 54b9d20 6045f26 54b9d20 6045f26 54b9d20 6045f26 4790918 6045f26 54b9d20 6045f26 54b9d20 6045f26 54b9d20 6045f26 54b9d20 4790918 54b9d20 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 643 644 645 646 647 648 649 650 651 652 653 654 655 656 657 658 659 660 661 662 663 664 665 666 667 668 669 670 671 672 673 674 675 676 677 678 679 680 681 682 683 684 685 686 687 688 689 690 691 692 693 694 695 696 697 698 699 700 701 702 703 704 705 706 707 708 709 710 711 712 713 714 715 716 717 718 719 720 721 722 723 724 725 726 727 728 729 730 731 732 733 734 735 736 737 738 739 740 741 742 743 744 745 746 747 748 749 750 751 752 753 754 755 756 757 758 759 760 761 762 763 764 765 766 767 768 769 770 771 772 773 774 775 776 777 778 779 780 781 782 783 784 785 786 787 788 789 790 791 792 793 794 795 796 797 798 799 800 801 802 803 804 805 806 807 808 809 810 811 812 813 814 815 816 817 818 819 820 821 822 823 824 825 826 827 828 829 830 831 832 833 834 835 836 837 838 839 840 841 842 843 844 845 846 847 848 849 850 851 852 853 854 855 856 857 858 859 860 861 862 863 864 865 866 867 868 869 870 871 872 873 874 875 876 877 878 879 880 881 882 883 884 885 886 887 888 889 890 891 892 893 894 895 896 897 898 899 900 901 902 903 904 905 906 907 908 909 910 911 912 913 914 915 916 917 918 919 920 921 922 923 924 925 926 927 928 929 930 931 932 933 934 935 936 937 938 939 940 941 942 943 944 945 946 947 948 949 950 951 952 953 954 955 956 957 958 959 960 961 962 963 964 965 966 967 968 969 970 971 972 973 974 975 976 |
import gradio as gr
import os
import io
import png
import tensorflow as tf
import tensorflow_text as tf_text
import tensorflow_hub as tf_hub
import numpy as np
from PIL import Image
from huggingface_hub import snapshot_download, HfFolder
from sklearn.metrics.pairwise import cosine_similarity
import traceback
import time
import pandas as pd # Para formatear la salida en tabla
# --- Configuración ---
MODEL_REPO_ID = "google/cxr-foundation"
MODEL_DOWNLOAD_DIR = './hf_cxr_foundation_space' # Directorio dentro del contenedor del Space
# Umbrales
SIMILARITY_DIFFERENCE_THRESHOLD = 0.1
POSITIVE_SIMILARITY_THRESHOLD = 0.1
print(f"Usando umbrales: Comp Δ={SIMILARITY_DIFFERENCE_THRESHOLD}, Simp τ={POSITIVE_SIMILARITY_THRESHOLD}")
# --- Prompts ---
criteria_list_positive = [
"optimal centering", "optimal inspiration", "optimal penetration",
"complete field of view", "scapulae retracted", "sharp image", "artifact free"
]
criteria_list_negative = [
"poorly centered", "poor inspiration", "non-diagnostic exposure",
"cropped image", "scapulae overlying lungs", "blurred image", "obscuring artifact"
]
# --- Funciones Auxiliares (Integradas o adaptadas) ---
# @tf.function(input_signature=[tf.TensorSpec(shape=[None], dtype=tf.string)]) # Puede ayudar rendimiento
def preprocess_text(text):
"""Función interna del preprocesador BERT."""
return bert_preprocessor_global(text) # Asume que bert_preprocessor_global está cargado
def bert_tokenize(text, preprocessor):
"""Tokeniza texto usando el preprocesador BERT cargado globalmente."""
if preprocessor is None:
raise ValueError("BERT preprocessor no está cargado.")
if not isinstance(text, str): text = str(text)
# Ejecutar el preprocesador
out¡ = preprocessor(tf.constant([text.lower()]))
# Extraer y procesar IDs y máscaras
ids = out['input_word_ids'].numpy().astype(np.int32)
masks =Por supuesto! Aquí está el código completo del archivo `app.py` para out['input_mask'].numpy().astype(np.float32)
paddings = 1.0 - masks
# Reemplazar token [SEP] (102) por 0 y marcar Gradio con la corrección del tema oscuro (eliminando `text_color_subdued`).
como padding
end_token_idx = (ids == 10```python
import gradio as gr
import os
import io
import png
import tensorflow as tf2)
ids[end_token_idx] = 0
import tensorflow_text as tf_text
import tensorflow_hub as tf paddings[end_token_idx] = 1.0_hub
import numpy as np
from PIL import Image
from huggingface_hub import snapshot_download,
# Asegurar las dimensiones (B, T, S) -> ( HfFolder
from sklearn.metrics.pairwise import cosine_similarity
import1, 1, 128)
# El preprocesador puede devolver (1, 128), necesitamos (1, 1, 12 traceback
import time
import pandas as pd # Para formatear la salida en tabla
# --- Configuración ---8)
if ids.ndim == 2: ids = np.expand_dims(ids, axis=1)
if paddings.
MODEL_REPO_ID = "google/cxr-foundation"
ndim == 2: paddings = np.expand_dims(paddMODEL_DOWNLOAD_DIR = './hf_cxr_foundation_space'ings, axis=1)
# Verificar formas finales
expected_shape = (1 # Directorio dentro del contenedor del Space
SIMILARITY_DIFFERENCE_THRESHOLD = , 1, 128)
if ids.shape != expected_shape:
# Intentar reajustar si es necesario (puede0.1
POSITIVE_SIMILARITY_THRESHOLD = 0.1 pasar con algunas versiones)
if ids.shape == (1,1
print(f"Usando umbrales: Comp Δ={SIMILAR28): ids = np.expand_dims(ids, axis=1ITY_DIFFERENCE_THRESHOLD}, Simp τ={POSITIVE_SIMILARITY_THRESHOLD}")
# --- Prompts ---
criteria_list_positive)
else: raise ValueError(f"Shape incorrecta para ids: = [
"optimal centering", "optimal inspiration", "optimal penetration",
"complete field of view {ids.shape}, esperado {expected_shape}")
if paddings", "scapulae retracted", "sharp image", "artifact free"
].shape != expected_shape:
if paddings.shape == (
criteria_list_negative = [
"poorly centered", "1,128): paddings = np.expand_dims(paddings, axis=1)poor inspiration", "non-diagnostic exposure",
"cropped image", "scapulae overlying lungs
else: raise ValueError(f"Shape incorrecta para paddings: {paddings.shape}, esperado {expected_shape}")
return ids, paddings
", "blurred image", "obscuring artifact"
]
# --- Funciones Auxiliadef png_to_tfexample(image_array: np.ndarray) -> tf.train.Example:
"""Crea tf.train.Example desde NumPy array (res (Integradas o adaptadas) ---
def bert_tokenize(text, preprocessor):
escala de grises)."""
if image_array.ndim == """Tokeniza texto usando el preprocesador BERT cargado globalmente."""
if 3 and image_array.shape[2] == 1:
preprocessor is None: raise ValueError("BERT preprocessor no está cargado.") image_array = np.squeeze(image_array, axis=2) # Asegurar 2D
elif image_array.ndim != 2:
raise ValueError(f'Array debe ser 2-D (
if not isinstance(text, str): text = str(text)escala de grises). Dimensiones actuales: {image_array.ndim
out = preprocessor(tf.constant([text.lower()]))}')
image = image_array.astype(np.float32)
min
ids = out['input_word_ids'].numpy().astype(_val = image.min()
max_val = image.max()
np.int32)
masks = out['input_mask'].# Evitar división por cero si la imagen es constante
if max_val <= min_val:numpy().astype(np.float32)
paddings =
# Si es constante, tratar como uint8 si el rango original lo permitía,
1.0 - masks
end_token_idx = (ids == 102)
# o simplemente ponerla a 0 si es float.
if image_array. ids[end_token_idx] = 0
paddings[end_token_idx] = 1.0
if ids.ndim == 2dtype == np.uint8 or (min_val >= 0 and max: ids = np.expand_dims(ids, axis=1)
if paddings.ndim == 2: paddings = np.expand_val <= 255):
pixel_array = image._dims(paddings, axis=1)
expected_shape = (1,astype(np.uint8)
bitdepth = 8
1, 128)
if ids.shape != expectedelse: # Caso flotante constante o fuera de rango uint8
pixel__shape:
if ids.shape == (1,128): ids = np.expand_dims(ids, axis=1)
else: raise ValueErrorarray = np.zeros_like(image, dtype=np.uint1(f"Shape incorrecta para ids: {ids.shape}, esperado {6)
bitdepth = 16
else:
expected_shape}")
if paddings.shape != expected_shape:image -= min_val # Mover mínimo a cero
current_max = max_val -
if paddings.shape == (1,128): padd min_val
# Escalar a 16-bit para mayor precisión si noings = np.expand_dims(paddings, axis=1) era uint8 originalmente
if image_array.dtype != np.uint8:
else: raise ValueError(f"Shape incorrecta para paddings:
image *= 65535 / current_max
pixel_array = {paddings.shape}, esperado {expected_shape}")
return ids, paddings
image.astype(np.uint16)
bitdepth = def png_to_tfexample(image_array: np.ndarray)16
else:
# Si era uint8, mantener el rango y tipo
# La resta del min ya la dejó en [0, current_max]
-> tf.train.Example:
"""Crea tf.train.Example desde NumPy array ( # Escalar a 255 si es necesario
image *= 255 / current_escala de grises)."""
if image_array.ndim ==max
pixel_array = image.astype(np.uint8) 3 and image_array.shape[2] == 1:
bitdepth = 8
# Codificar como PNG
output = io.Bytes image_array = np.squeeze(image_array, axis=2IO()
png.Writer(
width=pixel_array.) # Asegurar 2D
elif image_array.ndim != 2shape[1],
height=pixel_array.shape[0],:
raise ValueError(f'Array debe ser 2-D (
greyscale=True,
bitdepth=bitdepth
escala de grises). Dimensiones actuales: {image_array.ndim).write(output, pixel_array.tolist())
png_bytes = output.getvalue()
}')
image = image_array.astype(np.float32)
min_val # Crear tf.train.Example
example = tf.train.Example()
, max_val = image.min(), image.max()
if features = example.features.feature
features['image/encoded']. max_val <= min_val: # Imagen constante
if image_array.dtype == np.uint8 or (min_val >= 0 and max_bytes_list.value.append(png_bytes)
features['image/format'].bytes_list.value.append(b'png')
return example
def generate_image_embedding(img_np,val <= 255):
pixel_array = image.astype(np.uint8); bitdepth = 8
else:
pixel_array = np.zeros_like(image elixrc_infer, qformer_infer):
"""Genera embedding final, dtype=np.uint16); bitdepth = 16
else: # Imagen con rango
image -= min_val
current_max = max_val - min de imagen."""
if elixrc_infer is None or qformer_infer is None:
raise ValueError("Modelos ELIXR-C o Q_val
if image_array.dtype != np.uint8: #Former no cargados.")
try:
# 1. EL Escalar a 16-bit si no era uint8
image *= 6IXR-C
serialized_img_tf_example = png_5535 / current_max
pixel_array = image.to_tfexample(img_np).SerializeToString()
elixrc_output = elixrcastype(np.uint16); bitdepth = 16
_infer(input_example=tf.constant([serialized_img_tf_example]))else: # Mantener rango uint8
image *= 255 / current_max
pixel_array = image.astype(np.uint
elixrc_embedding = elixrc_output['feature_maps_0'].numpy()
8); bitdepth = 8
output = io.BytesIO()
png.Writer(width=pixel_array.shape[1], height=pixel_array.shape print(f" Embedding ELIXR-C shape: {elixrc_embedding.[0], greyscale=True, bitdepth=bitdepth).write(shape}")
# 2. QFormer (Imagen)
qformer_input_output, pixel_array.tolist())
png_bytes = output.getvalue()
example = tf.train.Example()
features = example.features.feature
features['image/encoded'].bytes_list.value.img = {
'image_feature': elixrc_embedding.tolist(),
append(png_bytes)
features['image/format'].bytes_ 'ids': np.zeros((1, 1, 12list.value.append(b'png')
return example
def8), dtype=np.int32).tolist(), # Texto vacío
'paddings': generate_image_embedding(img_np, elixrc_infer, np.ones((1, 1, 128), dtype= qformer_infer):
"""Genera embedding final de imagen."""
if elixnp.float32).tolist(), # Todo padding
}
qformer_output_img = qformer_infer(**qformer_input_imgrc_infer is None or qformer_infer is None: raise ValueError(")
image_embedding = qformer_output_img['all_contrastive_imgModelos ELIXR-C o QFormer no cargados.")
_emb'].numpy()
# Ajustar dimensiones si es necesario
if image_try:
# 1. ELIXR-C
serialized_embedding.ndim > 2:
print(f" Ajustimg_tf_example = png_to_tfexample(img_npando dimensiones embedding imagen (original: {image_embedding.shape})")
).SerializeToString()
elixrc_output = elixrc_infer( image_embedding = np.mean(
image_embedding,
input_example=tf.constant([serialized_img_tf_example])) axis=tuple(range(1, image_embedding.ndim -
elixrc_embedding = elixrc_output['feature_maps_0'].numpy1))
)
if image_embedding.ndim == 1()
print(f" Embedding ELIXR-C shape: {elixrc_embedding.:
image_embedding = np.expand_dims(image_embedding, axis=0)
elif image_embedding.ndim == 1:
shape}")
# 2. QFormer (Imagen)
qformer_input_ image_embedding = np.expand_dims(image_embedding, axis=0) # Asegurar 2D
print(f" Embedding final imagen shape: {image_embedding.shape}")
if image_embedding.ndimimg = {
'image_feature': elixrc_embedding.tolist(),
!= 2:
raise ValueError(f"Embedding final de imagen no tiene 2 dimensiones: { 'ids': np.zeros((1, 1, 12image_embedding.shape}")
return image_embedding
except Exception8), dtype=np.int32).tolist(), # Texto vacío
'paddings as e:
print(f"Error generando embedding de imagen: {e}")
': np.ones((1, 1, 128), dtype=np.floattraceback.print_exc()
raise # Re-lanzar32).tolist(), # Todo padding
}
qformer_output_img = qformer_ la excepción para que Gradio la maneje
def calculate_similarities_and_classify(infer(**qformer_input_img)
image_embedding = qformer_output_image_embedding, bert_preprocessor, qformer_infer):
img['all_contrastive_img_emb'].numpy()
# Ajustar dimensiones
if"""Calcula similitudes y clasifica."""
if image_embedding is None: raise ValueError("Embedding image_embedding.ndim > 2:
print(f" Ajustando de imagen es None.")
if bert_preprocessor is None: raise ValueError("Preprocesador BERT es dimensiones embedding imagen (original: {image_embedding.shape})")
image_embedding = np.mean(image_embedding, axis=tuple( None.")
if qformer_infer is None: raise ValueError("Qrange(1, image_embedding.ndim - 1)))
if image_embedding.ndim == Former es None.")
detailed_results = {}
print("\n--- Calculando similitudes y clasific1: image_embedding = np.expand_dims(image_embedding,ando ---")
for i in range(len(criteria_list_positive)):
axis=0) # Asegurar 2D
print(f" Embedding final imagen shapepositive_text = criteria_list_positive[i]
negative_: {image_embedding.shape}")
if image_embedding.ndimtext = criteria_list_negative[i]
criterion_name = != 2: raise ValueError(f"Embedding final imagen no tiene 2 dims positive_text # Usar prompt positivo como clave
print(f": {image_embedding.shape}")
return image_embedding
except Exception as e:
Procesando criterio: \"{criterion_name}\"")
similarity_positive, similarity print(f"Error generando embedding imagen: {e}"); traceback.print_exc(); raise
def calculate_similarities_and_classify(image_embedding, bert_preprocessor_negative, difference = None, None, None
classification_comp, classification_simp = "ERROR", "ERROR"
try:
#, qformer_infer):
"""Calcula similitudes y clasifica."""
if image_embedding is None: raise ValueError("Embedding imagen es None.")
if bert_ 1. Embedding Texto Positivo
tokens_pos, paddings_pos = bert_tokenize(preprocessor is None: raise ValueError("Preprocesador BERT es None.")
if qformer_positive_text, bert_preprocessor)
qformer_input_infer is None: raise ValueError("QFormer es None.")
detailed_results = {}
print("\n--- Calculando similitudes y clasificando ---")
for i intext_pos = {
'image_feature': np.zeros([ range(len(criteria_list_positive)):
positive_text,1, 8, 8, 1376], dtype= negative_text = criteria_list_positive[i], criteria_list_np.float32).tolist(), # Dummy
'ids': tokensnegative[i]
criterion_name = positive_text # Usar prompt positivo_pos.tolist(), 'paddings': paddings_pos.tolist(),
}
text como clave
print(f"Procesando criterio: \"{criterion_name}\"_embedding_pos = qformer_infer(**qformer_input_text")
similarity_positive, similarity_negative, difference = None, None, None
classification__pos)['contrastive_txt_emb'].numpy()
if text_embedding_poscomp, classification_simp = "ERROR", "ERROR"
try:.ndim == 1: text_embedding_pos = np.expand_
# 1. Embeddings de Texto
tokens_pos, paddings_pos = bert_tokenize(positive_text, bert_preprocessordims(text_embedding_pos, axis=0)
# )
qformer_input_pos = {'image_feature': np2. Embedding Texto Negativo
tokens_neg, paddings_neg.zeros([1, 8, 8, 1376 = bert_tokenize(negative_text, bert_preprocessor)
qformer_input_text], dtype=np.float32).tolist(), 'ids': tokens_pos.tolist(), 'padd_neg = {
'image_feature': np.zeros([1ings': paddings_pos.tolist()}
text_embedding_pos = qformer_infer(**qformer_input_pos)['contrastive_txt_emb'].numpy(), 8, 8, 1376], dtype=np
if text_embedding_pos.ndim == 1: text_embedding_pos = np.expand_dims(text_embedding_pos, axis=0).float32).tolist(), # Dummy
'ids': tokens_neg.tolist(), 'paddings': paddings_neg.tolist(),
tokens_neg, paddings_neg = bert_tokenize(negative_text, bert_preprocessor)
qformer_input_neg
}
text_embedding_neg = qformer_infer(** = {'image_feature': np.zeros([1, 8, qformer_input_text_neg)['contrastive_txt_emb'].numpy()
if text_embedding_neg.ndim == 1: text_embedding_neg8, 1376], dtype=np.float32). = np.expand_dims(text_embedding_neg, axis=0tolist(), 'ids': tokens_neg.tolist(), 'paddings':)
# Verificar compatibilidad de dimensiones para similitud
if image_embedding paddings_neg.tolist()}
text_embedding_neg = qformer_infer(**qformer_input_neg)['contrastive_txt_.shape[1] != text_embedding_pos.shape[1]:emb'].numpy()
if text_embedding_neg.ndim ==
raise ValueError(f"Dimensión incompatible: Imagen ({image_embedding.shape[11: text_embedding_neg = np.expand_dims(text_embedding_neg, axis=0)
# Verificar dimensiones
if image_embedding.shape]}) vs Texto Pos ({text_embedding_pos.shape[1]})")
if[1] != text_embedding_pos.shape[1]: raise ValueError(f"Dim mismatch: Img ({image_embedding.shape[1]}) vs Pos ({text_embedding_pos.shape[1]})")
if image_embedding image_embedding.shape[1] != text_embedding_neg.shape.shape[1] != text_embedding_neg.shape[1]: raise ValueError(f"Dim mismatch: Img ({image_embedding.shape[1]:
raise ValueError(f"Dimensión incompatible: Imagen ({image_embedding.shape[1[1]}) vs Neg ({text_embedding_neg.shape[1]})")
# 2. Calcular Similitudes
similarity_positive = cosine_similarity(image]}) vs Texto Neg ({text_embedding_neg.shape[1]})")_embedding, text_embedding_pos)[0][0]
similarity_negative =
# 3. Calcular Similitudes
similarity_positive = cosine_similarity(image_embedding cosine_similarity(image_embedding, text_embedding_neg)[0][, text_embedding_pos)[0][0]
similarity_negative0]
# 3. Clasificar
difference = similarity_positive - similarity = cosine_similarity(image_embedding, text_embedding_neg)[0_negative
classification_comp = "PASS" if difference > SIMILARITY_DIFFERENCE][0]
print(f" Sim (+)={similarity_positive_THRESHOLD else "FAIL"
classification_simp = "PASS" if:.4f}, Sim (-)={similarity_negative:.4f}")
similarity_positive > POSITIVE_SIMILARITY_THRESHOLD else "FAIL"# 4. Clasificar
difference = similarity_positive - similarity_
print(f" Sim(+)={similarity_positive:.4f},negative
classification_comp = "PASS" if difference > SIMILARITY_DIFFERENCE Sim(-)={similarity_negative:.4f}, Diff={difference:.4f_THRESHOLD else "FAIL"
classification_simp = "PASS" if} -> Comp:{classification_comp}, Simp:{classification_simp}")
except Exception as similarity_positive > POSITIVE_SIMILARITY_THRESHOLD else "FAIL" e:
print(f" ERROR procesando criterio '{criterion_name}': {e}"); traceback.print_exc()
# Mantener clasificaciones como "ERROR
print(f" Diff={difference:.4f} -> Comp: {classification_comp},"
detailed_results[criterion_name] = {
'positive_prompt': Simp: {classification_simp}")
except Exception as e:
print(f" ERROR procesando criterio '{criterion_name}': {e}")
traceback.print_exc()
# Mantener clasificaciones como "ERROR" positive_text, 'negative_prompt': negative_text,
'similarity_positive': float(similarity_positive) if similarity_positive is not None else None,
# Guardar resultados
detailed_results[criterion_name] = {
'similarity_negative': float(similarity_negative) if similarity_negative'positive_prompt': positive_text,
'negative_prompt': is not None else None,
'difference': float(difference) if negative_text,
'similarity_positive': float(similarity_positive difference is not None else None,
'classification_comparative': classification) if similarity_positive is not None else None,
'similarity__comp, 'classification_simplified': classification_simp
}
return detailed_resultsnegative': float(similarity_negative) if similarity_negative is not None else None,
'difference': float(difference) if difference is not None
# --- Carga Global de Modelos ---
print("--- Iniciando carga global de modelos else None,
'classification_comparative': classification_comp,
---")
start_time = time.time()
models_loaded = False
bert_preprocessor_global = None
elixrc_infer 'classification_simplified': classification_simp
}
return detailed_results
# ---_global = None
qformer_infer_global = None
try: Carga Global de Modelos ---
# Se ejecuta UNA VEZ al iniciar la
hf_token = os.environ.get("HF_TOKEN") # Leer aplicación Gradio/Space
print("--- Iniciando carga global de modelos ---")
start_ token desde secretos del Space
if hf_token: print("HFtime = time.time()
models_loaded = False
bert_pre_TOKEN encontrado, usando para autenticación.")
os.makedirs(MODEL_DOWNLOADprocessor_global = None
elixrc_infer_global = None
_DIR, exist_ok=True)
print(f"Descargando/verificando modelos en: {MODEL_DOWNLOAD_DIR}")qformer_infer_global = None
try:
# Añadir token si
snapshot_download(repo_id=MODEL_REPO_ID, local_dir=MODEL_DOWNLOAD_DIR,
allow_patterns=['elixr es necesario (para repos privados o gated)
hf_token = os.environ.get("-c-v2-pooled/*', 'pax-elixr-b-text/*'],
local_dir_use_symlinks=False, token=hf_token) # Pasar token aquí
print("Modelos descargados/verificados.")
HF_TOKEN") # Leer token desde secretos del Space
# if hf_token:
print("Cargando Preprocesador BERT...")
bert_preprocess# print("Usando HF_TOKEN para autenticación.")
# # HfFolder.save_token(hf_token) # Esto no siempre funciona bien en entornos server_handle = "https://tfhub.dev/tensorflow/bert_enless
# Crear directorio si no existe
os.makedirs(MODEL_DOWNLOAD_DIR_uncased_preprocess/3"
bert_preprocessor_global, exist_ok=True)
print(f"Descargando/verificando modelos en = tf_hub.KerasLayer(bert_preprocess_handle)
print("Preprocesador BERT: {MODEL_DOWNLOAD_DIR}")
snapshot_download(repo_id=MODEL cargado.")
print("Cargando ELIXR-C...")_REPO_ID, local_dir=MODEL_DOWNLOAD_DIR,
elixrc_model_path = os.path.join( allow_patterns=['elixr-c-v2-pooled/*', 'pax-elixrMODEL_DOWNLOAD_DIR, 'elixr-c-v2--b-text/*'],
local_dir_use_symlinkspooled')
elixrc_model = tf.saved_model.=False, # Evitar symlinks
token=hf_token) # Pasar tokenload(elixrc_model_path)
elixrc_infer_global = elixrc_model.signatures['serving_default']
print("Modelo aquí
print("Modelos descargados/verificados.")
# C ELIXR-C cargado.")
print("Cargando Qargar Preprocesador BERT desde TF Hub
print("Cargando Preprocesador BERT...")
Former (ELIXR-B Text)...")
qformer_model_path = os.path.join(MODEL_DOWNLOAD_DIR, '# Usar handle explícito puede ser más robusto en algunos entornos
bert_preprocess_pax-elixr-b-text')
qformer_handle = "https://tfhub.dev/tensorflow/bert_en_model = tf.saved_model.load(qformer_model_pathuncased_preprocess/3"
bert_preprocessor_global =)
qformer_infer_global = qformer_model.signatures['serving_default']
tf_hub.KerasLayer(bert_preprocess_handle)
print("Modelo QFormer cargado.")
models_loaded = True
end_print("Preprocesador BERT cargado.")
# Cargar ELIXR-C
print("Cargando ELIXR-C...")
elixrctime = time.time()
print(f"--- Modelos cargados global_model_path = os.path.join(MODEL_DOWNLOAD_DIRmente con éxito en {end_time - start_time:.2f}, 'elixr-c-v2-pooled')
el segundos ---")
except Exception as e:
models_loaded = False
print(ixrc_model = tf.saved_model.load(elixrcf"--- ERROR CRÍTICO DURANTE LA CARGA GLOBAL DE MODELOS_model_path)
elixrc_infer_global = el ---"); print(e); traceback.print_exc()
# --- Función Principal de Procesamiento paraixrc_model.signatures['serving_default']
print("Modelo Gradio ---
def assess_quality_and_update_ui(image ELIXR-C cargado.")
# Cargar QFormer (_pil):
"""Procesa la imagen y devuelve actualizaciones para la UI."""ELIXR-B Text)
print("Cargando QFormer
if not models_loaded:
raise gr.Error("Error: Los (ELIXR-B Text)...")
qformer_model_ modelos no se pudieron cargar. La aplicación no puede procesar imágenes.")
if image_pil is Nonepath = os.path.join(MODEL_DOWNLOAD_DIR, 'p:
# Devuelve valores por defecto/vacíos y controla la visibilidad
return (
ax-elixr-b-text')
qformer_model gr.update(visible=True), # Muestra bienvenida
gr.update(visible= = tf.saved_model.load(qformer_model_path)
qformer_infer_global = qformer_model.signatures['False), # Oculta resultados
None, # Borra imagen de salidaserving_default']
print("Modelo QFormer cargado.")
gr.update(value="N/A"), # Borra etiqueta
pdmodels_loaded = True
end_time = time.time()
.DataFrame(), # Borra dataframe
None # Borra JSON
)
print("\n--- Iniciando evaluación para nueva imagen ---")
start print(f"--- Modelos cargados globalmente con éxito en {end_time_process_time = time.time()
try:
# - start_time:.2f} segundos ---")
except Exception as e:
models_loaded = False
print(f"--- ERROR CRÍTICO DUR 1. Convertir a NumPy
img_np = np.arrayANTE LA CARGA GLOBAL DE MODELOS ---")
print(e)
traceback.print_(image_pil.convert('L'))
print(f"Imagenexc()
# Gradio se iniciará, pero la función de análisis fallará. convertida a NumPy. Shape: {img_np.shape}, Tipo:
# --- Función Principal de Procesamiento para Gradio ---
def assess_quality_and_ {img_np.dtype}")
# 2. Generar Embeddingupdate_ui(image_pil):
"""Procesa la imagen y devuelve actualizaciones
print("Generando embedding de imagen...")
image_embedding = generate_image_embedding(img_np, elixrc_infer_global, q para la UI."""
if not models_loaded:
raise grformer_infer_global)
print("Embedding de imagen generado.")
.Error("Error: Los modelos no se pudieron cargar. La aplicación no puede procesar imágenes.")
# 3. Clasificar
print("Calculando similitudes y clasificando criterios if image_pil is None:
# Devuelve valores por defecto/vacíos...")
detailed_results = calculate_similarities_and_classify(image_embedding, bert_preprocessor_global, qformer_infer_ y controla la visibilidad
return (
gr.update(visible=Trueglobal)
print("Clasificación completada.")
# ), # Muestra bienvenida
gr.update(visible=False), # Oculta resultados
4. Formatear Resultados
output_data, passed_count,None, # Borra imagen de salida
gr.update(value="N/A total_count = [], 0, 0
for criterion, details in detailed_results.items"), # Borra etiqueta
pd.DataFrame(), # Borra dataframe():
total_count += 1
sim_pos = details
None # Borra JSON
)
print("\n--- Iniciando evaluación['similarity_positive']
sim_neg = details['similarity_negative para nueva imagen ---")
start_process_time = time.time']
diff = details['difference']
comp = details['classification_comparative']
simp = details['classification_simplified']
()
try:
# 1. Convertir a NumPy
img_np = np.array(image_pil.convert('Loutput_data.append([ criterion, f"{sim_pos:.4f}"'))
print(f"Imagen convertida a NumPy. Shape: {img_np.shape}, Tipo: {img_np.dtype}")
if sim_pos is not None else "N/A",
f"{sim_neg:. # 2. Generar Embedding de Imagen
print("Generando embedding4f}" if sim_neg is not None else "N/A", de imagen...")
image_embedding = generate_image_embedding(img f"{diff:.4f}" if diff is not None else "N/_np, elixrc_infer_global, qformer_infer_A", comp, simp ])
if comp == "PASS": passed_count += 1
global)
print("Embedding de imagen generado.")
# 3 df_results = pd.DataFrame(output_data, columns=[ "Criterion", "Sim (+)", "Sim (-)", "Difference", "Assessment (Comp)", "Assessment (Simp)" ])
overall_quality = "Error"; pass_. Calcular Similitudes y Clasificar
print("Calculando similitudesrate = 0
if total_count > 0:
y clasificando criterios...")
detailed_results = calculate_similarities_and_classify(pass_rate = passed_count / total_count
if pass_image_embedding, bert_preprocessor_global, qformer_infer_rate >= 0.85: overall_quality = "Excellent"
elif pass_rate >= global)
print("Clasificación completada.")
# 0.70: overall_quality = "Good"
elif pass4. Formatear Resultados para Gradio
output_data = []
passed_count = _rate >= 0.50: overall_quality = "Fair"0
total_count = 0
for criterion, details in detailed_results.items
else: overall_quality = "Poor"
quality_label():
total_count += 1
sim_pos = details['similarity_positive']
sim_neg = details['similarity_negative = f"{overall_quality} ({passed_count}/{total_count}']
diff = details['difference']
comp = details['classification passed)"
end_process_time = time.time()
print(f"--- Evaluación completada en {end_process_time - start_process_time:.2f} seg_comparative']
simp = details['classification_simplified']
---")
# Devolver resultados y actualizar visibilidad
return (
output_data.append([
criterion,
f"{sim_pos:.4f}"gr.update(visible=False), # Oculta bienvenida
gr.update(visible=True), # Muestra resultados
image_pil, # Muestra imagen if sim_pos is not None else "N/A",
f procesada
gr.update(value=quality_label), # Actualiza etiqueta
df_results, # Actualiza dataframe
detailed"{sim_neg:.4f}" if sim_neg is not None else_results # Actualiza JSON
)
except Exception as e "N/A",
f"{diff:.4f}" if diff:
print(f"Error durante procesamiento Gradio: {e}"); is not None else "N/A",
comp,
simp
])
traceback.print_exc()
raise gr.Error(f"Error procesando imagen: {str if comp == "PASS":
passed_count += 1
(e)}")
# --- Función para Resetear la UI ---
def reset_ui # Crear DataFrame
df_results = pd.DataFrame(output_data, columns():
print("Reseteando UI...")
return (
gr.update(visible==[
"Criterion", "Sim (+)", "Sim (-)", "Difference", "Assessment (CompTrue), # Muestra bienvenida
gr.update(visible=False), # Oculta resultados
None, # Borra imagen de)", "Assessment (Simp)"
])
# Calcular etiqueta de calidad general
overall_quality entrada
None, # Borra imagen de salida
gr.update(value="N/A"), # Borra etiqueta
pd = "Error"
pass_rate = 0
if total_count > 0:
.DataFrame(), # Borra dataframe
None # Borra JSON
)
# --- Definir Tema Oscuro Personalizado ---
# Inspirado en los colores del HTML original y pass_rate = passed_count / total_count
if pass Tailwind dark grays/blues
dark_theme = gr.themes.Default_rate >= 0.85: overall_quality = "Excellent"
elif pass_rate >=(
primary_hue=gr.themes.colors.blue, # Azul como color primario
secondary_hue=gr.themes.colors.blue, 0.70: overall_quality = "Good"
elif # Azul secundario
neutral_hue=gr.themes.colors pass_rate >= 0.50: overall_quality = "Fair.gray, # Gris neutro
font=[gr.themes.GoogleFont("Inter"
else: overall_quality = "Poor"
quality_"), "ui-sans-serif", "system-ui", "sans-label = f"{overall_quality} ({passed_count}/{total_countserif"],
font_mono=[gr.themes.GoogleFont("Jet} passed)"
end_process_time = time.time()
print(f"---Brains Mono"), "ui-monospace", "Consolas", "monospace"],
Evaluación completada en {end_process_time - start_process_time:.2f} segundos ---).set(
# Fondos
body_background_fill="#111827", # Fondo principal muy oscuro (gray-900)
background_fill_primary="#1f2937",")
# Devolver resultados y actualizar visibilidad
return (
# Fondo de componentes (gray-800)
background_fill_secondary="#3gr.update(visible=False), # Oculta bienvenida
gr.update(visible=74151", # Fondo secundario (gray-700)
block_background_fill="#1f2937", True), # Muestra resultados
image_pil, # Muestra imagen# Fondo de bloques (gray-800)
# Texto
procesada
gr.update(value=quality_label), # Actualiza etiqueta
df body_text_color="#d1d5db", # Texto_results, # Actualiza dataframe
detailed_results # Actualiza JSON
)
except Exception as e:
print(f"Error durante principal claro (gray-300)
# text_color_subdued="# procesamiento Gradio: {e}")
traceback.print_exc()
9ca3af", # <-- LÍNEA PROBLEMÁTICA EL# Lanzar un gr.Error para mostrarlo en la UI de Gradio
raise gr.Error(f"Error procesando imagen: {str(e)}")
# --- Función para ResetearIMINADA
block_label_text_color="#d1d5db", # Etiquetas de bloque (gray-300)
block_title_text la UI ---
def reset_ui():
print("Reseteando UI...")
return (
gr.update(visible=True), # Muestra bienvenida
_color="#ffffff", # Títulos de bloque (blanco)
gr.update(visible=False), # Oculta resultados
# Bordes
border_color_accent="#374151",None, # Borra imagen de entrada
None, # Bor # Borde (gray-700)
border_colorra imagen de salida
gr.update(value="N/A"), # Borra etiqueta
_primary="#4b5563", # Borde primario (gray-pd.DataFrame(), # Borra dataframe
None # Borra JSON
)
600)
# Botones y Elementos Interactivos
# --- Definir Tema Oscuro Personalizado (CORREGIDO) ---
#button_primary_background_fill="*primary_600", # Usa color primario (azul)
button_primary_text_color="#ffffff",
Inspirado en los colores del HTML original y Tailwind dark grays/blues
dark_button_secondary_background_fill="*neutral_700",
button_secondary_text_color="#ffffff",
input_background_fill="#3theme = gr.themes.Default(
primary_hue=gr.74151", # Fondo de inputs (gray-700)
input_borderthemes.colors.blue, # Azul como color primario
secondary_hue=gr.themes.colors.blue, # Azul secundario
neutral_hue=gr_color="#4b5563", # Borde de inputs (gray-.themes.colors.gray, # Gris neutro
font=[gr.themes.GoogleFont("Inter"), "ui-sans-serif", "system-ui", "sans600)
input_text_color="#ffffff", # Texto en inputs
# Sombras y Radios
shadow_drop="rgba(0,0,0,0-serif"],
font_mono=[gr.themes.GoogleFont("JetBrains Mono"), "ui.2) 0px 2px 4px",
block-monospace", "Consolas", "monospace"],
).set(
_shadow="rgba(0,0,0,0.2) # Fondos
body_background_fill="#111827", 0px 2px 5px",
radius_size="*# Fondo principal muy oscuro (gray-900)
background_fill_primaryradius_lg", # Bordes redondeados
)
# --- Definir la Interfaz Gradio con="#1f2937", # Fondo de componentes (gray-800)
Bloques y Tema ---
with gr.Blocks(theme=dark_theme, title="CXR Quality Assessment") as demo:
# --- Cabecera ---
with gr.Row():
gr.Markdown(
"""
# <span style="color: # background_fill_secondary="#374151", #e5e7eb;">CXR Quality Assessment</span>
<p style Fondo secundario (gray-700)
block_background_="color: #9ca3af;">Evaluate chest X-ray technical quality usingfill="#1f2937", # Fondo de bloques (gray-8 AI (ELIXR family)</p>
""",
elem_id="app-header00)
# Texto
body_text_color="#d1d5db", #"
)
# --- Contenido Principal (Dos Columnas) ---
with gr Texto principal claro (gray-300)
# text_color_subdued.Row(equal_height=False): # Permitir alturas diferentes
# --- Columna Iz="#9ca3af", # <--- ESTA LÍNEA CAUSABA EL ERROR Y FUE ELIMINADA/COMENTADA
block_label_text_color="#d1d5db", # Etiquetas de bloque (gray-300quierda (Carga) ---
with gr.Column(scale=1,)
block_title_text_color="#ffffff", # T min_width=350):
gr.Markdown("### ítulos de bloque (blanco)
# Bordes
border_1. Upload Image", elem_id="upload-title")
inputcolor_accent="#374151", # Borde (gray-70_image = gr.Image(type="pil", label="Upload Chest X-ray", height=300)
border_color_primary="#4b55630) # Altura fija para imagen entrada
with gr.Row():
", # Borde primario (gray-600)
analyze_btn = gr.Button("Analyze Image", variant="primary", scale=2)
reset_btn = gr.Button("Reset", variant="secondary", scale=1)
## Botones y Elementos Interactivos
button_primary_background_fill="*primary_600", # Usa color primario (azul)
button_primary_ Añadir ejemplos si tienes imágenes de ejemplo
# gr.Examples(
text_color="#ffffff",
button_secondary_background_fill="*neutral_700",# examples=[os.path.join("examples", "sample_cx
button_secondary_text_color="#ffffff",
input_background_fill="#3r.png")],
# inputs=input_image, label="Example CXR"
# )
gr.Markdown(
74151", # Fondo de inputs (gray-700)
input_border_color="#4b5563", # Borde de inputs (gray-"<p style='color:#9ca3af; font-size:0600)
input_text_color="#ffffff", #.9em;'>Model loading on startup takes ~1 min. Analysis takes ~15-40 sec.</p>"
)
# --- Columna Derecha (Bienvenida / Resultados) ---
Texto en inputs
# Sombras y Radios
shadow_dropwith gr.Column(scale=2):
# --- Bloque de Bienvenida (Visible Inicialmente="rgba(0,0,0,0.2) 0px) ---
with gr.Column(visible=True, elem_id 2px 4px",
block_shadow="rgba(0,0="welcome-section") as welcome_block:
gr.Markdown(,0,0.2) 0px 2px 5px",
radius_size="*radius_lg", # Bordes redondeados
)
"""
### Welcome!
Upload a chest X-ray image (# --- Definir la Interfaz Gradio con Bloques y Tema ---
with gr.Blocks(themePNG, JPG, etc.) on the left panel and click "Analyze Image".=dark_theme, title="CXR Quality Assessment") as demo:
The system will evaluate its technical quality based on 7 standard criteria using the ELIXR model family. # --- Cabecera ---
with gr.Row():
gr.Markdown
The results will appear here once the analysis is complete.
""",(
"""
# <span style="color: #e5e7eb;">CXR elem_id="welcome-text"
)
# --- Blo Quality Assessment</span>
<p style="color: #9ca3af;">Evaluate chest X-ray technical quality using AI (ELIXR family)</p>
que de Resultados (Oculto Inicialmente) ---
with gr.""", # Usar blanco/gris claro para texto cabecera
elem_id="app-header"
)
# --- Contenido Principal (DosColumn(visible=False, elem_id="results-section") as results Columnas) ---
with gr.Row(equal_height=False): # Permitir alturas diferentes
# --- Columna Izquierda (Carga) ---
with gr.Column(scale=1, min_width=_block:
gr.Markdown("### 2. Quality Assessment Results350):
gr.Markdown("### 1. Upload Image", elem_id="results-title")
with gr.Row(): # Fila para imagen de salida", elem_id="upload-title")
input_image = gr.Image(type y resumen
with gr.Column(scale=1):
output_image = gr.Image(type="pil", label="Analyzed Image", interactive=False)
with gr.Column(scale="pil", label="Upload Chest X-ray", height=300) # Altura fija para imagen entrada
with gr.Row():
analyze_btn = gr=1):
gr.Markdown("#### Summary", elem_id=".Button("Analyze Image", variant="primary", scale=2)
reset_btn = gr.Button("Reset", variant="secondary", scale=1)
#summary-title")
output_label = gr.Label(value="N/A", label="Overall Quality Estimate", elem_id="quality-label")
gr.Markdown Añadir ejemplos si tienes imágenes de ejemplo
# gr.Examples(
("#### Detailed Criteria Evaluation", elem_id="detailed-title")
output # examples=[os.path.join("examples", "sample__dataframe = gr.DataFrame(
headers=["Criterion", "Sim (+cxr.png")],
# inputs=input_image, label)", "Sim (-)", "Difference", "Assessment (Comp)", "Assessment (Simp)"],
label=None, # Quitar etiqueta redundante
wrap=True,
max="Example CXR"
# )
gr.Markdown(
"<p style='color:#9ca3af; font-size:0.9_rows=10, # Limitar filas visibles con scroll
overflow_row_behaviour="show_ends", # Muestra inicio/fin al hacer scroll
em;'>Model loading on startup takes ~1 min. Analysis takes ~15-4interactive=False, # No editable
elem_id="results-dataframe"
)
0 sec.</p>"
)
# --- Columna Derecha (Bienvenida / Resultados) ---
with gr.Column(scale=2): with gr.Accordion("Raw JSON Output (for debugging)", open=False
# --- Bloque de Bienvenida (Visible Inicialmente) ---
with gr.Column(visible=True, elem_id="welcome-section") as welcome_block:
gr.Markdown):
output_json = gr.JSON(label=None)
gr.Markdown(
f"""
#### Technical Notes
* **Criterion:** Quality(
"""
### Welcome!
Upload a chest X-ray image ( aspect evaluated.
* **Sim (+/-):** Cosine similarity with positive/negative prompt.
* **Difference:** Sim (+) - Sim (-).
*PNG, JPG, etc.) on the left panel and click "Analyze Image". **Assessment (Comp):** PASS if Difference > {SIMILARITY_DI
The system will evaluate its technical quality based on 7 standard criteria using the ELIXR model family.FFERENCE_THRESHOLD}. (Main Result)
* **Assessment (
The results will appear here once the analysis is complete.
""",Simp):** PASS if Sim (+) > {POSITIVE_SIMILARITY_THRESHOLD}.
""", elem_id="notes-text"
)
# --- Pie de página ---
gr.Markdown(
"""
elem_id="welcome-text"
)
# Podrías añadir un icono o----
<p style='text-align:center; color:#9 imagen aquí si quieres
# gr.Image("path/to/welcome_icon.pngca3af; font-size:0.8em;'>
C", interactive=False, show_label=False, show_download_button=FalseXR Quality Assessment Tool | Model: google/cxr-foundation | Interface: Gradio
</p>
""", elem_id="app-footer"
))
# --- Bloque de Resultados (Oculto Inicialmente) ---
with gr.
# --- Conexiones de Eventos ---
analyze_btn.click(
fnColumn(visible=False, elem_id="results-section") as results=assess_quality_and_update_ui,
inputs=[input_block:
gr.Markdown("### 2. Quality Assessment Results", elem_id="results_image],
outputs=[
welcome_block, # ->-title")
with gr.Row(): # Fila para imagen de salida actualiza visibilidad bienvenida
results_block, # -> actualiza visibilidad resultados
y resumen
with gr.Column(scale=1):
outputoutput_image, # -> muestra imagen analizada
output_label, # -> actualiza etiqueta resumen
output_dataframe, # -> actualiza tabla
output_image = gr.Image(type="pil", label="Analyzed Image_json # -> actualiza JSON
]
)
reset_btn.click(
fn=reset_ui,
inputs=None,", interactive=False)
with gr.Column(scale=1):
gr.Markdown("#### # No necesita inputs
outputs=[
welcome_block,
Summary", elem_id="summary-title")
output_label = gr.Label(valueresults_block,
input_image, # -> limpia imagen entrada="N/A", label="Overall Quality Estimate", elem_id="quality
output_image,
output_label,
output_dataframe,
output_json
]
)
# ----label")
# Podríamos añadir más texto de resumen aquí si quisiéramos
Iniciar la Aplicación Gradio ---
if __name__ == "__main__":
gr.Markdown("#### Detailed Criteria Evaluation", elem_id="detailed-title # server_name="0.0.0.0" para accesibilidad en red local
# server_port=7860 es el puerto estándar de HF")
output_dataframe = gr.DataFrame(
headers=["Criterion", "Sim (+)", "Sim (-)", "Difference", "Assessment (Comp)", "Assessment (Simp)"],
label=None, # Quitar etiqueta redundante
wrap=True,
# La altura ahora se maneja mejor automáticamente o con CSS
# row_count=(7, "dynamic Spaces
demo.launch(server_name="0.0.0") # Mostrar 7 filas, permitir scroll si hay más
max_rows=10, # Lim.0", server_port=7860) |