Spaces:
Running
on
Zero
Running
on
Zero
Automatically check the device and supports running directly on Apple M-series chip devices
#28
by
xiaochenftx
- opened
app.py
CHANGED
|
@@ -12,6 +12,12 @@ from pipeline_fill_sd_xl import StableDiffusionXLFillPipeline
|
|
| 12 |
from PIL import Image, ImageDraw
|
| 13 |
import numpy as np
|
| 14 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 15 |
config_file = hf_hub_download(
|
| 16 |
"xinsir/controlnet-union-sdxl-1.0",
|
| 17 |
filename="config_promax.json",
|
|
@@ -27,11 +33,11 @@ state_dict = load_state_dict(model_file)
|
|
| 27 |
model, _, _, _, _ = ControlNetModel_Union._load_pretrained_model(
|
| 28 |
controlnet_model, state_dict, model_file, "xinsir/controlnet-union-sdxl-1.0"
|
| 29 |
)
|
| 30 |
-
model.to(device=
|
| 31 |
|
| 32 |
vae = AutoencoderKL.from_pretrained(
|
| 33 |
"madebyollin/sdxl-vae-fp16-fix", torch_dtype=torch.float16
|
| 34 |
-
).to(
|
| 35 |
|
| 36 |
pipe = StableDiffusionXLFillPipeline.from_pretrained(
|
| 37 |
"SG161222/RealVisXL_V5.0_Lightning",
|
|
@@ -39,7 +45,7 @@ pipe = StableDiffusionXLFillPipeline.from_pretrained(
|
|
| 39 |
vae=vae,
|
| 40 |
controlnet=model,
|
| 41 |
variant="fp16",
|
| 42 |
-
).to(
|
| 43 |
|
| 44 |
pipe.scheduler = TCDScheduler.from_config(pipe.scheduler.config)
|
| 45 |
|
|
@@ -185,7 +191,7 @@ def infer(image, width, height, overlap_percentage, num_inference_steps, resize_
|
|
| 185 |
negative_prompt_embeds,
|
| 186 |
pooled_prompt_embeds,
|
| 187 |
negative_pooled_prompt_embeds,
|
| 188 |
-
) = pipe.encode_prompt(final_prompt,
|
| 189 |
|
| 190 |
for image in pipe(
|
| 191 |
prompt_embeds=prompt_embeds,
|
|
|
|
| 12 |
from PIL import Image, ImageDraw
|
| 13 |
import numpy as np
|
| 14 |
|
| 15 |
+
device = "cpu"
|
| 16 |
+
if torch.cuda.is_available():
|
| 17 |
+
device = "cuda"
|
| 18 |
+
elif torch.backends.mps.is_available():
|
| 19 |
+
device = "mps"
|
| 20 |
+
|
| 21 |
config_file = hf_hub_download(
|
| 22 |
"xinsir/controlnet-union-sdxl-1.0",
|
| 23 |
filename="config_promax.json",
|
|
|
|
| 33 |
model, _, _, _, _ = ControlNetModel_Union._load_pretrained_model(
|
| 34 |
controlnet_model, state_dict, model_file, "xinsir/controlnet-union-sdxl-1.0"
|
| 35 |
)
|
| 36 |
+
model.to(device=device, dtype=torch.float16)
|
| 37 |
|
| 38 |
vae = AutoencoderKL.from_pretrained(
|
| 39 |
"madebyollin/sdxl-vae-fp16-fix", torch_dtype=torch.float16
|
| 40 |
+
).to(device)
|
| 41 |
|
| 42 |
pipe = StableDiffusionXLFillPipeline.from_pretrained(
|
| 43 |
"SG161222/RealVisXL_V5.0_Lightning",
|
|
|
|
| 45 |
vae=vae,
|
| 46 |
controlnet=model,
|
| 47 |
variant="fp16",
|
| 48 |
+
).to(device)
|
| 49 |
|
| 50 |
pipe.scheduler = TCDScheduler.from_config(pipe.scheduler.config)
|
| 51 |
|
|
|
|
| 191 |
negative_prompt_embeds,
|
| 192 |
pooled_prompt_embeds,
|
| 193 |
negative_pooled_prompt_embeds,
|
| 194 |
+
) = pipe.encode_prompt(final_prompt, device, True)
|
| 195 |
|
| 196 |
for image in pipe(
|
| 197 |
prompt_embeds=prompt_embeds,
|