Fed-AI-Savant / src /modules /llm_completions.py
RobertoBarrosoLuque
Add chat, orchestrator and tool use
001487b
raw
history blame
11 kB
from fireworks import LLM
from pydantic import BaseModel
import asyncio
import json
import time
from typing import Dict, Any, List
from gradio import ChatMessage
MODELS = {
"small": "accounts/fireworks/models/qwen3-235b-a22b-instruct-2507",
"large": "accounts/fireworks/models/kimi-k2-instruct"
}
TODAY = time.strftime("%Y-%m-%d")
semaphore = asyncio.Semaphore(10)
def get_llm(model: str, api_key: str) -> LLM:
return LLM(model=MODELS[model], api_key=api_key, deployment_type="serverless")
async def get_llm_completion(llm: LLM, prompt_text: str, output_class: BaseModel = None) -> str:
if output_class:
return llm.chat.completions.create(
messages=[
{
"role": "user",
"content": prompt_text
},
],
temperature=0.1,
response_format={
"type": "json_object",
"schema": output_class.model_json_schema(),
},
)
return llm.chat.completions.create(
messages=[
{
"role": "user",
"content": prompt_text
},
],
temperature=0.1
)
async def get_streaming_completion(llm: LLM, prompt_text: str, system_prompt: str = None):
"""
Get streaming completion from LLM for real-time responses
:param llm: The LLM instance
:param prompt_text: The user's input message
:param system_prompt: Optional system prompt for context
:return: Generator yielding response chunks
"""
messages = []
if system_prompt:
messages.append({
"role": "system",
"content": system_prompt
})
messages.append({
"role": "user",
"content": prompt_text
})
try:
response = llm.chat.completions.create(
messages=messages,
temperature=0.2,
stream=True,
max_tokens=1000
)
for chunk in response:
if chunk.choices[0].delta.content:
yield chunk.choices[0].delta.content
except Exception as e:
yield f"Error generating response: {str(e)}"
async def run_multi_llm_completions(llm: LLM, prompts: list[str], output_class: BaseModel) -> list[str]:
"""
Run multiple LLM completions in parallel
:param llm:
:param prompts:
:param output_class:
:return:
"""
async with semaphore:
if output_class:
print(f"Running LLM with structured outputs")
tasks = [
asyncio.create_task(
get_llm_completion(llm=llm, prompt_text=prompt, output_class=output_class)
) for prompt in prompts
]
else:
print(f"Running LLM with non-structured outputs")
tasks = [
asyncio.create_task(
get_llm_completion(llm=llm, prompt_text=prompt)
) for prompt in prompts
]
return await asyncio.gather(*tasks)
def get_orchestrator_decision(user_query: str, api_key: str, prompt_library: Dict[str, str]) -> Dict[str, Any]:
"""Use orchestrator LLM to decide which tools to use"""
try:
orchestrator_prompt = prompt_library.get('fed_orchestrator', '')
formatted_prompt = orchestrator_prompt.format(user_query=user_query, date=TODAY)
llm = get_llm("large", api_key)
response = llm.chat.completions.create(
messages=[
{"role": "system", "content": "You are a tool orchestrator. Always respond with valid JSON."},
{"role": "user", "content": formatted_prompt}
],
temperature=0.1,
max_tokens=500
)
# Parse JSON response
result = json.loads(response.choices[0].message.content)
return {"success": True, "decision": result}
except Exception as e:
print(f"Error in orchestrator: {e}")
# Fallback to simple logic
return {
"success": False,
"decision": {
"tools_needed": [{"function": "get_latest_meeting", "parameters": {}, "reasoning": "Fallback to latest meeting"}],
"query_analysis": f"Error occurred, using fallback for: {user_query}"
}
}
def execute_fed_tools(tools_decision: Dict[str, Any], fed_tools: Dict[str, callable]) -> List[Dict[str, Any]]:
"""Execute the tools determined by the orchestrator"""
results = []
for tool in tools_decision.get("tools_needed", []):
function_name = tool.get("function", "")
parameters = tool.get("parameters", {})
reasoning = tool.get("reasoning", "")
start_time = time.time()
try:
# Execute the appropriate function
if function_name in fed_tools:
tool_func = fed_tools[function_name]
result = tool_func(**parameters)
else:
result = {"success": False, "error": f"Unknown function: {function_name}"}
execution_time = time.time() - start_time
results.append({
"function": function_name,
"parameters": parameters,
"reasoning": reasoning,
"result": result,
"execution_time": execution_time,
"success": result.get("success", False)
})
except Exception as e:
execution_time = time.time() - start_time
results.append({
"function": function_name,
"parameters": parameters,
"reasoning": reasoning,
"result": {"success": False, "error": str(e)},
"execution_time": execution_time,
"success": False
})
return results
def stream_fed_agent_response(
message: str,
api_key: str,
prompt_library: Dict[str, str],
fed_tools: Dict[str, callable]
):
"""Main orchestrator function that coordinates tools and generates responses with ChatMessage objects"""
if not message.strip():
yield [ChatMessage(role="assistant", content="Please enter a question about Federal Reserve policy or FOMC meetings.")]
return
if not api_key.strip():
yield [ChatMessage(role="assistant", content="❌ Please set your FIREWORKS_API_KEY environment variable.")]
return
messages = []
try:
# Step 1: Use orchestrator to determine tools needed
messages.append(ChatMessage(
role="assistant",
content="Analyzing your query...",
metadata={"title": "🧠 Planning", "status": "pending"}
))
yield messages
orchestrator_result = get_orchestrator_decision(message, api_key, prompt_library)
tools_decision = orchestrator_result["decision"]
# Update planning message
messages[0] = ChatMessage(
role="assistant",
content=f"Query Analysis: {tools_decision.get('query_analysis', 'Analyzing Fed data requirements')}\n\nTools needed: {len(tools_decision.get('tools_needed', []))}",
metadata={"title": "🧠 Planning", "status": "done"}
)
yield messages
# Step 2: Execute the determined tools
if tools_decision.get("tools_needed"):
for i, tool in enumerate(tools_decision["tools_needed"]):
tool_msg = ChatMessage(
role="assistant",
content=f"Executing: {tool['function']}({', '.join([f'{k}={v}' for k, v in tool['parameters'].items()])})\n\nReasoning: {tool['reasoning']}",
metadata={"title": f"πŸ”§ Tool {i+1}: {tool['function']}", "status": "pending"}
)
messages.append(tool_msg)
yield messages
# Execute all tools
tool_results = execute_fed_tools(tools_decision, fed_tools)
# Update tool messages with results
for i, (tool_result, tool_msg) in enumerate(zip(tool_results, messages[1:])):
execution_time = tool_result["execution_time"]
success_status = "βœ…" if tool_result["success"] else "❌"
messages[i+1] = ChatMessage(
role="assistant",
content=f"{success_status} {tool_result['function']} completed\n\nExecution time: {execution_time:.2f}s\n\nResult summary: {str(tool_result['result'])[:200]}...",
metadata={"title": f"πŸ”§ Tool {i+1}: {tool_result['function']}", "status": "done", "duration": execution_time}
)
yield messages
# Step 3: Use results to generate final response
combined_context = ""
for result in tool_results:
if result["success"]:
combined_context += f"\n\nFrom {result['function']}: {json.dumps(result['result'], indent=2)}"
# Generate Fed Savant response using tool results
system_prompt_template = prompt_library.get('fed_savant_chat', '')
system_prompt = system_prompt_template.format(
fed_data_context=combined_context,
user_question=message,
date=TODAY
)
# Initialize LLM and get streaming response
llm = get_llm("large", api_key)
final_response = ""
for chunk in llm.chat.completions.create(
messages=[
{"role": "system", "content": system_prompt},
{"role": "user", "content": message}
],
temperature=0.2,
stream=True,
max_tokens=1000
):
if chunk.choices[0].delta.content:
final_response += chunk.choices[0].delta.content
# Update messages list with current response
if len(messages) > len(tool_results):
messages[-1] = ChatMessage(role="assistant", content=final_response)
else:
messages.append(ChatMessage(role="assistant", content=final_response))
yield messages
else:
# No tools needed, direct response
messages.append(ChatMessage(role="assistant", content="No specific tools required. Providing general Fed information."))
yield messages
except Exception as e:
messages.append(ChatMessage(role="assistant", content=f"Error generating response: {str(e)}"))
yield messages